3 resultados para dichloromethane substitution
em Universidad de Alicante
Resumo:
The allylic substitution reaction, and particularly the direct allylic amination reaction, of free allylic alcohols in water catalyzed by FeCl3⋅6 H2O is described. This novel environmentally-friendly methodology allows the use of a wide variety of nitrogenated nucleophiles such as sulfonamides, carbamates, benzamides, anilines, benzotriazoles, and azides, generally giving good yields of the corresponding substitution products. The synthetic applicability of the process is also demonstrated because the reaction can be performed on gram-scale. Additionally, carbon nucleophiles such as silylated nucleophiles, aromatic compounds, and malonates also proved to be suitable for this transformation. Finally, the nature of the catalytic species present in aqueous media is unveiled, pointing towards the formation of hexaaquo iron(III) complexes.
Resumo:
Binary and ternary combinations of sewage sludge ash (SSA) with marble dust (MD), fly ash (FA) and rice husk ash (RHA) as replacement in Portland cement pastes, were assessed. Several tests were carried out at different curing ages: thermogravimetry, density, water absorption, ultrasonic pulse velocity and mechanical strengths. Pozzolanic effects of the mineral admixtures, densities similar to control sample and improved absorptions when combining waste materials were identified. In general, the compressive strength reaches or exceeds the cement strength class, and blending SSA, FA and RHA (30% cement replacement) increase of strength by 9%, compared to the control sample, was achieved.
Resumo:
Direct nucleophilic substitution reactions of allylic alcohols are environmentally friendly, since they generate only water as a byproduct, allowing access to new allylic compounds. This reaction has, thus, attracted the interest of the chemical community and several strategies have been developed for its successful accomplishment. This review gathers the latest advances in this methodology involving SN1-type reactions.