7 resultados para dibenzofurans

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper submitted to the 31st International Symposium on Halogenated Persistent Organic Compounds (Dioxin 2011), Brussels, Belgium, 21-25 August 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen de la comunicación presentada en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic activity and durability of 2 wt.% Pd/Al2O3 in powder and washcoated on cordierite monoliths were examined for the liquid phase hydrodechlorination (LPHDC) of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs), also known as dioxins. NaOH was employed as a neutralizing agent, and 2-propanol was used as a hydrogen donor and a solvent. Fresh and spent powder and monolith samples were characterized by elemental analysis, surface area, hydrogen chemisorption, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and transmission electron microscopy/energy dispersive X-ray spectroscopy (TEM/EDX). Three reactor configurations were compared including the slurry and monolith batch reactors as well as the bubble loop column resulting in 100, 70, and 72% sample toxicity reduction, respectively, after 5 h of reaction. However, the slurry and monolith batch reactors lead to catalyst sample loss via a filtration process (slurry) and washcoat erosion (monolith batch), as well as rapid deactivation of the powder catalyst samples. The monolith employed in the bubble loop column remained stable and active after four reaction runs. Three preemptive regeneration methods were evaluated on spent monolith catalyst including 2-propanol washing, oxidation/reduction, and reduction. All three procedures reactivated the spent catalyst samples, but the combustion methods proved to be more efficient at eliminating the more stable poisons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion runs at 700 °C in a horizontal laboratory furnace were carried out on two different electric wires (PVC and halogen-free wire). Tests were performed in the presence and in the absence of the metal conductor of the wires. The analyses of the polycyclic aromatic hydrocarbons (PAHs), chlorobenzenes (CBzs), chlorophenols (CPhs), mono- to octa-chlorodibenzo-p-dioxin and dibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, PAHs production decreases in the presence of metal, while a higher amount of chlorinated compounds are emitted. Respect to the PCDD/Fs, the PVC wire in the presence of metal presents the highest emission, with a much more emission of furans than dioxins. The maximum emission is with 2 or 3 chlorine atom PCDD/Fs. PCBs emission correlates with PCDD/F production and represents 3–4% of total toxicity, determined by using WHO2005 factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of laboratory experiments with model mixtures (active carbon + CuBr2 at different loads), this work studies the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) by de novo synthesis. For the different samples, the temperature of the maximum carbon oxidation rate was determined by thermogravimetric analysis, and a kinetic model was proposed for the degradation of the materials in an oxidizing atmosphere (synthetic air). The effect of the addition of different amounts of CuBr2 was studied, finding that its presence accelerates the degradation of the carbonaceous structure in the presence of oxygen. The thermal degradation of the samples in air is satisfactorily described by a first-order single-reaction model. In addition, combustion runs of one of the mixtures (consisting of activated carbon + 50 wt % CuBr2, pyrolyzed at 700 °C) were performed in a quartz horizontal laboratory furnace. The analysis of the emissions and the solid residue proved the formation of brominated dioxins and furans at 300, 400, and 500 °C, with a maximum yield at 300 °C (91.7 ng/g of total PBDD/Fs) and a higher bromination degree with increasing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) have been studied for several decades and are well-known as unintentionally generated persistent organic pollutants (POPs), which pose serious health and environmental risks on a global scale1. Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/F) have similar properties and effects to PCDD/F, as they are structural analogs with all the chlorine atoms substituted by bromine atoms. PBDD/F have been found in various matrices such as air, sediments, marine products, and human adipose samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen del póster presentado en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.