19 resultados para design processes
em Universidad de Alicante
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.
Resumo:
Póster presentado en Escape 22, European Symposium on Computer Aided Process Engineering, University College London, UK, 17-20 June 2012.
Resumo:
Presentation submitted to PSE Seminar, Chemical Engineering Department, Center for Advanced Process Design-making (CAPD), Carnegie Mellon University, Pittsburgh (USA), October 2012.
Resumo:
In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues related to the convergence of distillation columns (or column sections) are also maintained in the simulation environment. The model is formulated as a Generalized Disjunctive Programming (GDP) problem and solved using the logic based outer approximation algorithm without MINLP reformulation. Some examples involving from a single column to thermally coupled sequence or extractive distillation shows the performance of the new algorithm.
Resumo:
CO2 capture by solid sorbents is a physisorption process in which the gas molecules are adsorbed in a different porosity range, depending on the temperature and pressure of the capture conditions. Accordingly, CO2 capture capacities can be enhanced if the sorbent has a proper porosity development and a suitable pore size distribution. Thus, the main objective of this work is to maximize the CO2 capture capacity at ambient temperature, elucidating which is the most suitable porosity that the adsorbent has to have as a function of the emission source conditions. In order to do so, different activated carbons have been selected and their CO2 capture capacities have been measured. The obtained results show that for low CO2 pressures (e.g., conditions similar to post-combustion processes) the sorbent should have the maximum possible volume of micropores smaller than 0.7 nm. However, the sorbent requires the maximum possible total micropore volume when the capture is performed at high pressures (e.g., conditions similar to oxy-combustion or pre-combustion processes). Finally, this study also analyzes the important influence that the sorbent density has on the CO2 capture capacity, since the adsorbent will be confined in a bed with a restricted volume.
Resumo:
Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.
Resumo:
We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
The footwear industry is a traditional craft sector, where technological advances are difficult to implement owing to the complexity of the processes being carried out, and the level of precision demanded by most of them. The shoe last joining operation is one clear example, where two halves from different lasts are put together, following a specifically traditional process, to create a new one. Existing surface joining techniques analysed in this paper are not well adapted to shoe last design and production processes, which makes their implementation in the industry difficult. This paper presents an alternative surface joining technique, inspired by the traditional work of lastmakers. This way, lastmakers will be able to easily adapt to the new tool and make the most out of their know-how. The technique is based on the use of curve networks that are created on the surfaces to be joined, instead of using discrete data. Finally, a series of joining tests are presented, in which real lasts were successfully joined using a commercial last design software. The method has shown to be valid, efficient, and feasible within the sector.
Resumo:
We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).
Resumo:
In this work we study Forward Osmosis (FO) as an emerging desalination technology, and its capability to replace totally or partially Reverse Osmosis (RO) in order to reduce the great amount of energy required in the current desalination plants. For this purpose, we propose a superstructure that includes both membrane based desalination technologies, allowing the selection of only one of the technologies or a combination of both of them seeking for the optimal configuration of the network. The optimization problem is solved for a seawater desalination plant with a given fresh water production. The results obtained show that the optimal solution combines both desalination technologies to reduce not only the energy consumption but also the total cost of the desalination process in comparison with the same plant but operating only with RO.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
Possible drawbacks of microreactors are inefficient reactant mixing and the clogging of microchannels when solid-forming reactions are carried out or solid (catalysts) suspensions are used. Ultrasonic irradiation has been successfully implemented for solving these problems in microreactor configurations ranging from capillaries immersed in ultrasonic baths to devices with miniaturized piezoelectric transducers. Moving forward in process intensification and sustainable development, the acoustic energy implementation requires a strategy to optimize the microreactor from an ultrasound viewpoint during its design. In this work, we present a simple analytical model that can be used as a guide to achieving a proper acoustic design of stacked microreactors. An example of this methodology was demonstrated through finite element analysis and it was compared with an experimental study found in the literature.
Resumo:
The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging-based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging-based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise-free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum.