6 resultados para cryptographic pairing computation, elliptic curve cryptography
em Universidad de Alicante
Resumo:
As the user base of the Internet has grown tremendously, the need for secure services has increased accordingly. Most secure protocols, in digital business and other fields, use a combination of symmetric and asymmetric cryptography, random generators and hash functions in order to achieve confidentiality, integrity, and authentication. Our proposal is an integral security kernel based on a powerful mathematical scheme from which all of these cryptographic facilities can be derived. The kernel requires very little resources and has the flexibility of being able to trade off speed, memory or security; therefore, it can be efficiently implemented in a wide spectrum of platforms and applications, either software, hardware or low cost devices. Additionally, the primitives are comparable in security and speed to well known standards.
Resumo:
Pseudorandom generators are a basic foundation of many cryptographic services and information security protocols. We propose a modification of a previously published matricial pseudorandom generator that significantly improves performance and security. The resulting generator is successfully compared to world class standards.
Resumo:
Most cryptographic services and information security protocols require a dependable source of random data; pseudorandom generators are convenient and efficient for this application working as one of the basic foundation blocks on which to build the required security infrastructure. We propose a modification of a previously published matricial pseudorandom generator that significantly improves performance and security by using word packed matrices and modifying key scheduling and bit extraction schemes. The resulting generator is then successfully compared to world class standards.
Resumo:
Tool path generation is one of the most complex problems in Computer Aided Manufacturing. Although some efficient strategies have been developed, most of them are only useful for standard machining. However, the algorithms used for tool path computation demand a higher computation performance, which makes the implementation on many existing systems very slow or even impractical. Hardware acceleration is an incremental solution that can be cleanly added to these systems while keeping everything else intact. It is completely transparent to the user. The cost is much lower and the development time is much shorter than replacing the computers by faster ones. This paper presents an optimisation that uses a specific graphic hardware approach using the power of multi-core Graphic Processing Units (GPUs) in order to improve the tool path computation. This improvement is applied on a highly accurate and robust tool path generation algorithm. The paper presents, as a case of study, a fully implemented algorithm used for turning lathe machining of shoe lasts. A comparative study will show the gain achieved in terms of total computing time. The execution time is almost two orders of magnitude faster than modern PCs.
Resumo:
These days as we are facing extremely powerful attacks on servers over the Internet (say, by the Advanced Persistent Threat attackers or by Surveillance by powerful adversary), Shamir has claimed that “Cryptography is Ineffective”and some understood it as “Cryptography is Dead!” In this talk I will discuss the implications on cryptographic systems design while facing such strong adversaries. Is crypto dead or we need to design it better, taking into account, mathematical constraints, but also systems vulnerability constraints. Can crypto be effective at all when your computer or your cloud is penetrated? What is lost and what can be saved? These are very basic issues at this point of time, when we are facing potential loss of privacy and security.
Resumo:
Mercury intrusion porosimetry (MIP) has been widely used to evaluate the quality of concrete through the pore size distribution parameters. Two of these parameters are the critical pore diameter (Dcrit) and the percentage of the most interconnected net of pores compared to the total volume of pores. Some researchers consider Dcrit as the diameter obtained from the inflexion point of the cumulative mercury intrusion curve while others consider Dcrit as the diameter obtained from the point of abrupt variation in the same curve. This study aims to analyze two groups of concretes of varying w/c ratios, one cast with pozzolanic cement and another with high initial strength cement, in order to determine which of these diameters feature a better correlation with the quality parameters of the concretes. The concrete quality parameters used for the evaluations were (1) the w/c ratios and (2) chloride diffusion coefficients measured at approximately 90 days. MIP cumulative distributions of the same concretes were also measured at about 90 days, and Dcrit values were determined (1) from the point of abrupt variation and alternatively, (2) from the inflexion point of each of these plots. It was found that Dcrit values measured from the point of abrupt variation were useful indicators of the quality of the concrete, but the Dcrit values based on the inflexion points were not. Hence, it is recommended that Dcrit and the percentage of the most interconnected volume of pores should be obtained considering the point of abrupt variation of the cumulative curve of pore size distribution.