2 resultados para corneal disease

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare outcomes of big-bubble deep anterior lamellar keratoplasty (DALK) and penetrating keratoplasty (PK) for macular corneal dystrophy. Design: Prospective, randomized, interventional case series. Methods: Setting: Single hospital. Patients: Eighty-two eyes of 54 patients requiring keratoplasty for the treatment of macular corneal dystrophy without endothelial involvement were included. Main outcome measures: Operative complications, uncorrected visual acuity, best-corrected visual acuity, contrast sensitivity function, higher-order aberrations, and endothelial cell density were evaluated. Results: The DALK and PK group consisted of 35 and 41 eyes, respectively. Best-corrected visual acuity after surgery was 20/40 or better 68.5% and 70.7% of the eyes in the DALK and PK groups, respectively (P > .05). No statistically significant differences between groups were found in contrast sensitivity function with and without glare for any spatial frequency (P > .05). Significantly higher levels of higher-order aberrations were found in the DALK group (P < .01). In both groups, a progressive and statistically significant reduction in endothelial cell density was found (P < .01). At the last follow-up, the mean endothelial cell loss was 18.1% and 26.9% in DALK and PK groups, respectively (P = .03). Graft rejection episodes were seen in 5 eyes (12.1%) in the PK group, and regrafting was necessary in 3 eyes (7.3%). Recurrence of the disease was documented in 5.7% and 4.8% of the eyes in the DALK and PK groups, respectively. Conclusions: Deep anterior lamellar keratoplasty with the big-bubble technique provided comparable visual and optical results as PK and resulted in less endothelial damage, as well as eliminating endothelial rejection in macular corneal dystrophy. Deep anterior lamellar keratoplasty surgery is a viable option for macular corneal dystrophy without endothelial involvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomechanics is often defined as ‘mechanics applied to biology’. Due to the variety and complexity of the behaviour of biological structures and materials, biomechanics is better defined as the development, extension and application of mechanics for a better understanding of physiology and physiopathology and consequently for a better diagnosis and treatment of disease and injury. Different methods for the characterisation of corneal biomechanics are reviewed in detail, including those that are currently commercially available (Ocular Response Analyzer and CorVis ST). The clinical applicability of the parameters provided by these devices are discussed, especially in the fields of glaucoma, detection of ectatic disorders and orthokeratology. Likewise, other methods are also reviewed, such as Brillouin microscopy or dynamic optical coherence tomography and others with potential application to clinical practice but not validated for in vivo measurements, such as ultrasonic elastography. Advantages and disadvantages of all these techniques are described. Finally, the concept of biomechanical modelling is revised as well as the requirements for developing biomechanical models, with special emphasis on finite element modelling.