8 resultados para copolymer (PVDF-TrFE)
em Universidad de Alicante
Resumo:
The transitions and reactions involved in the thermal processing of binary mixtures of polyethylene and poly(ethylene-co-vinyl acetate) copolymers with different concentrations of a foaming agent (azodicarbonamide) were studied using differential scanning calorimetry (DSC). The effect of ZnO as a kicker also was discussed. The temperature at the maximum rate and the heat evolved were measured for all the processes—melting, transitions, and reactions—all the mixtures prepared were measured and compared. Azodicarbonamide decomposed differently depending on the polymeric matrix. These data can be very useful for the plastic processing industry.
Resumo:
Nanostructured TiO2 photocatalysts with small crystalline sizes have been synthesized by sol-gel using the amphiphilic triblock copolymer Pluronic P123 as template. A new synthesis route, based on the treatment of TiO2 xerogels with acid-ethanol mixtures in two different steps, synthesis and extraction-crystallization, has been investigated, analyzing two acids, hydrochloric and hydriodic acid. As reference, samples have also been prepared by extraction-crystallization in ethanol, being these TiO2 materials amorphous and presenting higher porosities. The prepared materials present different degrees of crystallinity depending on the experimental conditions used. In general, these materials exhibit high surface areas, with an important contribution of microporosity and mesoporosity, and with very small size anatase crystals, ranging from 5 to 7 nm. The activity of the obtained photocatalysts has been assessed in the oxidation of propene in gas phase at low concentration (100 ppmv) under a UVA lamp with 365 nm wavelength. In the conditions studied, these photocatalysts show different activities in the oxidation of propene which do not depend on their surface areas, but on their crystallinity and band gap energies, being sample prepared with HCl both during synthesis and in extraction-crystallizations steps, the most active one, with superior performance than Evonik P25.
Resumo:
In this study, a new type of nanopigment, obtained from a nanoclay (NC) and a dye, was synthesized in the laboratory, and these nanopigments were used to color an ethylene vinyl acetate (EVA) copolymer. Several of these nanoclay-based pigments (NCPs) were obtained through variations in the cation exchange capacity (CEC) percentage of the NC exchanged with the dye and also including an ammonium salt. Composites of EVA and different amounts of the as-synthesized nanopigments were prepared in a melt-intercalation process. Then, the morphological, mechanical, thermal, rheological, and colorimetric properties of the samples were assessed. The EVA/NCP composites developed much better color properties than the samples containing only the dye, especially when both the dye and the ammonium salt were exchanged with NC. Their other properties were similar to those of more conventional EVA/NC composites.
Resumo:
This study deals with the rheological aspects of poly-vinyl chloride (PVC) plastisol gelation and fusion processes in foamable formulations. Here, such processes are simulated by temperature-programmed experiment (5 K min−1) in which complex viscosity components are continuously recorded. Nineteen samples based on a PVC-VAC (vinyl acetate 95/5) copolymer with 100 phr plasticizer have been studied, differing only by the plasticizer structure. The sample shear modulus increases continuously with temperature until a maximum, long time after the end of the dissolution process as characterized by DSC. The temperature at the maximum varies between 345 and 428 K with a clear tendency to increase almost linearly with the plasticizer molar mass, and to vary with the flexibility and the degree of branching of the plasticizer molecule. The shear modulus increase is interpreted in terms of progressive “welding” of swelled particles by polymer chain reptation. The plasticizer nature would mainly affect the friction parameter of chain diffusion.
Resumo:
El objetivo principal de la presente investigación ha sido desarrollar una nueva clase de materiales nanocompuestos orgánicos-inorgánicos basados en la capacidad de los copolímeros de bloque de auto-organizarse promoviendo la dispersión de nanopartículas, así como relacionar las diferentes morfologías obtenidas con las propiedades finales de los nanocompuestos. Para generar la nanoestructuración de estos nanocompuestos basados en copolímeros de bloque, como el poli(estireno-b-isopreno-b-estireno) (SIS) y el poli(estireno-b-butadieno-b-estireno) (SBS) en nanopartículas de plata, se han utilizado los conceptos de compatibilización y confinamiento. Es decir, las nanopartículas inorgánicas se confinaron en una sola fase del copolímero de bloque mediante tratamientos superficiales y su funcionalización física. En particular, se utilizaron surfactantes (el cloruro de tetrametilamonio, TMAC, y el dodecanotiol, DT) para favorecer la interacción entre las nanopartículas inorgánicas y la matriz polimérica. Teniendo en cuenta los cálculos teóricos de los parámetros de solubilidad obtenidos mediante la teoría de Hoftizer-Van Krevelen, y la electronegatividad propia de los diferentes elementos, los dos surfactantes elegidos tienen una muy buena compatibilidad con el bloque de estireno favoreciendo la localización de las nanopartículas de plata en este bloque.
Resumo:
In this work, a sodium montmorillonite (Na+-Mt) was modified with two molecules simultaneously, an organic dye, methylene blue (MB), and ethyl hexadecyl dimethyl ammonium (EHDDMA). The synthesised organo-montmorillonites (OMt) combining different proportions of the two molecules were thoroughly characterised and mixed with ethylene vinyl acetate copolymer (EVA) in order to check the ability of these OMt as pigments and reinforcing additives. The synthesised OMt combining both surfactants, MB and EHDDMA, present higher interlayer distances than those with only MB, which were employed in previous works as nanopigments. When these OMt were incorporated in the EVA matrix, the obtained clay polymer nanocomposites (CPN) showed a high exfoliation degree of the OMt in the polymer, in such a way that at 80% of the cationic exchange capacity (CEC) of the Mt exchanged with EHDDMA, most of the OMt was exfoliated. Moreover, all the obtained CPN showed an increase in the Young's Moduli compared to the EVA reference, and especially those containing higher amounts of MB. The thermal stability of the CPN also increases with the MB content, compared to other CPN including conventional surfactants. The hiding power and colouring power achieved in the CPN are higher even with a much lower load of MB when EHDDMA is exchanged in the Mt.
Resumo:
The aim of this report is to discuss the method of determination of lattice-fluid binary interaction parameters by comparing well characterized immiscible blends and block copolymers of poly(methyl methacrylate) (PMMA) and poly(ϵ−caprolactone) (PCL). Experimental pressure-volume-temperature (PVT) data in the liquid state were correlated with the Sanchez—Lacombe (SL) equation of state with the scaling parameters for mixtures and copolymers obtained through combination rules of the characteristic parameters for the pure homopolymers. The lattice-fluid binary parameters for energy and volume were higher than those of block copolymers implying that the copolymers were more compatible due to the chemical links between the blocks. Therefore, a common parameter cannot account for both homopolymer blend and block copolymer phase behaviors based on current theory. As we were able to adjust all data of the mixtures with a single set of lattice-binary parameters and all data of the block copolymers with another single set we can conclude that both parameters did not depend on the composition for this system. This characteristic, plus the fact that the additivity law of specific volumes can be suitably applied for this system, allowed us to model the behavior of the immiscible blend with the SL equation of state. In addition, a discussion on the relationship between lattice-fluid binary parameters and the Flory–Huggins interaction parameter obtained from Leibler's theory is presented.
Resumo:
The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.