3 resultados para control architecture
em Universidad de Alicante
Resumo:
This paper presents a new dynamic visual control system for redundant robots with chaos compensation. In order to implement the visual servoing system, a new architecture is proposed that improves the system maintainability and traceability. Furthermore, high performance is obtained as a result of parallel execution of the different tasks that compose the architecture. The control component of the architecture implements a new visual servoing technique for resolving the redundancy at the acceleration level in order to guarantee the correct motion of both end-effector and joints. The controller generates the required torques for the tracking of image trajectories. However, in order to guarantee the applicability of this technique, a repetitive path tracked by the robot-end must produce a periodic joint motion. A chaos controller is integrated in the visual servoing system and the correct performance is observed in low and high velocities. Furthermore, a method to adjust the chaos controller is proposed and validated using a real three-link robot.
Resumo:
A large part of the new generation of computer numerical control systems has adopted an architecture based on robotic systems. This architecture improves the implementation of many manufacturing processes in terms of flexibility, efficiency, accuracy and velocity. This paper presents a 4-axis robot tool based on a joint structure whose primary use is to perform complex machining shapes in some non-contact processes. A new dynamic visual controller is proposed in order to control the 4-axis joint structure, where image information is used in the control loop to guide the robot tool in the machining task. In addition, this controller eliminates the chaotic joint behavior which appears during tracking of the quasi-repetitive trajectories required in machining processes. Moreover, this robot tool can be coupled to a manipulator robot in order to form a multi-robot platform for complex manufacturing tasks. Therefore, the robot tool could perform a machining task using a piece grasped from the workspace by a manipulator robot. This manipulator robot could be guided by using visual information given by the robot tool, thereby obtaining an intelligent multi-robot platform controlled by only one camera.
Resumo:
The explosive growth of the traffic in computer systems has made it clear that traditional control techniques are not adequate to provide the system users fast access to network resources and prevent unfair uses. In this paper, we present a reconfigurable digital hardware implementation of a specific neural model for intrusion detection. It uses a specific vector of characterization of the network packages (intrusion vector) which is starting from information obtained during the access intent. This vector will be treated by the system. Our approach is adaptative and to detecting these intrusions by using a complex artificial intelligence method known as multilayer perceptron. The implementation have been developed and tested into a reconfigurable hardware (FPGA) for embedded systems. Finally, the Intrusion detection system was tested in a real-world simulation to gauge its effectiveness and real-time response.