2 resultados para conservation biology

em Universidad de Alicante


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The knowledge of the distributional patterns of saproxylic beetles is essential for conservation biology due to the relevance of this fauna in the maintenance of ecological processes and the endangerment of species. The complex community of saproxylic beetles is shaped by different assemblages that are composed of species linked by the microhabitats they use. We evaluate how different the species distribution patterns that are obtained can be, depending on the analyzed assemblage and to what extent these can affect conservation decisions. Beetles were sampled using hollow emergence and window traps in three protected areas of the Iberian Peninsula. Species richness, composition, and diversity turnover were analyzed for each sampling method and showed high variation depending on the analyzed assemblage. Beta diversity was clearly higher among forests for the assemblage captured using window traps. This method collects flying insects from different tree microhabitats and its captures are influenced by the forest structuring. Within forests, the assemblages captured by hollow emergence traps, which collect the fauna linked to tree hollows, showed the largest turnover of species, as they are influenced by the characteristics of each cavity. Moreover, the selection of the forest showing the highest species richness strongly depended on the studied assemblage. This study demonstrates that differences in the studied assemblages (group of species co-occurring in the same habitat) can also lead to significant differences in the identified patterns of species distribution and diversity turnover. This fact will be necessary to take into consideration when making decisions about conservation and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high rate of amphibian endemism and the severe habitat modification in the Caribbean islands make them an ideal place to test if the current protected areas network might protect this group. In this study, we model distribution and map species richness of the 40 amphibian species from eastern Cuba with the objectives of identify hotspots, detect gaps in species representation in protected areas, and select additional areas to fill these gaps. We used two modeling methods, Maxent and Habitat Suitability Models, to reach a consensus distribution map for each species, then calculate species richness by combining specific models and finally performed gap analyses for species and hotspots. Our results showed that the models were robust enough to predict species distributions and that most of the amphibian hotspots were represented in reserves, but 50 percent of the species were incompletely covered and Eleutherodactylus rivularis was totally uncovered by the protected areas. We identified 1441 additional km2 (9.9% of the study area) that could be added to the current protected areas, allowing the representation of every species and all hotspots. Our results are relevant for the conservation planning in other Caribbean islands, since studies like this could contribute to fill the gaps in the existing protected areas and to design a future network. Both cases would benefit from modeling amphibian species distribution using available data, even if they are incomplete, rather than relying only in the protection of known or suspected hotspots.