3 resultados para computed tomography images

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To evaluate postoperative spectral-domain optical coherence tomography findings after macular hole surgery. Methods: Retrospective, interventional, nonrandomized study. Overall, 164 eyes of 157 patients diagnosed with macular hole were operated on by vitrectomy and internal limiting membrane peeling. Preoperative and postoperative best-corrected visual acuity and spectral-domain optical coherence tomography images were obtained. Two groups were considered on the basis of the postoperative integrity of the back reflection line from the ellipsoid portion of the photoreceptor inner segment: group A (disruption of ellipsoid portion of the inner segment line, 60 eyes) and group B (restoration of ellipsoid portion of the inner segment line, 104 eyes). Results: Logarithm of the minimum angle of resolution best-corrected visual acuity improved significantly after the surgery of macular hole from a mean preoperative value of 0.79 ± 0.37 (range, 0.15–2.00) to a mean postoperative value of 0.35 ± 0.31 (range, 0.00–1.30) at the last follow-up visit (P < 0.01). Best-corrected visual acuity improved significantly in the 2 groups analyzed (all P < 0.01). A larger improvement was found in group B than in group A (P < 0.01). Conclusion: Ellipsoid portion of the inner segment line reconstruction seems to be a good prognostic factor for visual rehabilitation after macular hole surgery.