6 resultados para clusters of galaxies

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context. Recent studies have shown that the area around the massive, obscured cluster RSGC3 may harbour several clusters of red supergiants. Aims. We analyse a clump of photometrically selected red supergiant candidates 20′ south of RSGC3 in order to confirm the existence of another of these clusters. Methods. Using medium-resolution infrared spectroscopy around 2.27 μm, we derived spectral types and velocities along the line of sight for the selected candidates, confirming their nature and possible association. Results. We find a compact clump of eight red supergiants and four other candidates at some distance, all of them spectroscopically confirmed red supergiants. The majority of these objects must form an open cluster, which we name Alicante 10. Because of the high reddening and strong field contamination, the cluster sequence is not clearly seen in 2MASS or GPS-UKIDSS. From the observed sources, we derive E(J − KS) = 2.6 and d ≈ 6 kpc. Conclusions. Although the cluster is smaller than RSGC3, it has an initial mass in excess of 10 000 M⊙, and it seems to be part of the RSGC3 complex. With the new members this association already has 35 spectroscopically confirmed red supergiants, confirming its place as one of the most active sites of recent stellar formation in the Galaxy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Discoveries during the last two years have revealed the existence of a vast region of star formation close to the base of the Scutum Arm, where at least five clusters of red supergiants have been found. In order to understand the nature of this region, we need to determine accurate distances to the clusters. We present here the first results of an ongoing program to derive fundamental parameters (such as age, distance, etc.) to the massive cluster Stephenson 2 studying for the first time its main sequence stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Four clusters of red supergiants have been discovered in a region of the Milky Way close to base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. If the clusters are physically connected, this Scutum Complex would be the largest and most massive star-forming region ever identified in the Milky Way. Aims. The spatial extent of one of these clusters, RSGC3, has not been investigated. In this paper we explore the possibility that a population of red supergiants could be located in its vicinity. Methods. We utilised 2MASS JHKS photometry to identify candidate obscured luminous red stars in the vicinity of RSGC3. We observed a sample of candidates with the TWIN spectrograph on the 3.5-m telescope at Calar Alto, obtaining intermediate-resolution spectroscopy in the 8000−9000 Å range. We re-evaluated a number of classification criteria proposed in the literature for this spectral range and found that we could use our spectra to derive spectral types and luminosity classes. Results. We measured the radial velocity of five members of RSGC3, finding velocities similar to the average for members of Stephenson 2. Among the candidates observed outside the cluster, our spectra revealed eight M-type supergiants at distances <18′ from the centre of RSGC3, distributed in two clumps. The southern clump is most likely another cluster of red supergiants, with reddening and age identical to RSGC3. From 2MASS photometry, we identified four likely supergiant members of the cluster in addition to the five spectroscopically observed. The northern clump may be a small cluster with similar parameters. Photometric analysis of the area around RSGC3 suggests the presence of a large (>30) population of red supergiants with similar colours. Conclusions. Our data suggest that the massive cluster RSGC3 is surrounded by an extended association, which may be very massive ( ≳ 105 M⊙). We also show that supergiants in the Scutum Complex may be characterised via a combination of 2MASS photometry and intermediate-to-high-resolution spectroscopy in the Z band.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The discovery of several clusters of red supergiants towards l = 24°−30° has triggered interest in this area of the Galactic plane, where lines of sight are very complex and previous explorations of the stellar content were very preliminary. Aims. We attempt to characterise the stellar population associated with the H ii region RCW 173 (=Sh2-60), located at, as previous studies have suggested that this population could be beyond the Sagittarius arm. Methods. We obtained UBV photometry of a stellar field to the south of the brightest part of RCW 173, as well as spectroscopy of about twenty stars in the area. We combined our new data with archival 2MASS near-infrared photometry and Spitzer/GLIMPSE imaging and photometry, to achieve a more accurate characterisation of the stellar sources and the associated cloud. Results. We find a significant population of early-type stars located at d = 3.0 kpc, in good agreement with the “near” dynamical distance to the H ii region. This population should be located at the near intersection of the Scutum-Crux arm. A luminous O7 II star is likely to be the main source of ionisation. Many stars are concentrated around the bright nebulosity, where GLIMPSE images in the mid infrared show the presence of a bubble of excited material surrounding a cavity that coincides spatially with a number of B0-1 V stars. We interpret this as an emerging cluster, perhaps triggered by the nearby O7 II star. We also find a number of B-type giants. Some of them are located at approximately the same distance, and may be part of an older population in the same area, characterised by much lower reddening. A few have shorter distance moduli and are likely to be located in the Sagittarius arm. Conclusions. The line of sight in this direction is very complex. Optically visible tracers delineate two spiral arms, but seem to be absent beyond d ≈ 3 kpc. Several H ii regions in this area suggest that the Scutum-Crux arm contains thick clouds actively forming stars. All these populations are projected on top of the major stellar complex signposted by the clusters of red supergiants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Several clusters of red supergiants have been discovered in a small region of the Milky Way close to the base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. Amongst these clusters, Stephenson 2, with a core grouping of 26 red supergiants, is a strong candidate to be the most massive young cluster in the Galaxy. Aims. Stephenson 2 is located close to a region where a strong over-density of red supergiants had been found. We explore the actual cluster size and its possible connection to this over-density. Methods. Taking advantage of Virtual Observatory tools, we have performed a cross-match between the DENIS, USNO-B1 and 2MASS catalogues to identify candidate obscured luminous red stars around Stephenson 2, and in a control nearby region. More than 600 infrared bright stars fulfill our colour criteria, with the vast majority having a counterpart in the I band and >400 being sufficiently bright in I to allow observation with a 4-m class telescope. We observed a subsample of ~250 stars, using the multi-object, wide-field, fibre spectrograph AF2 on the WHT telescope in La Palma, obtaining intermediate-resolution spectroscopy in the 7500–9000 Å range. We derived spectral types and luminosity classes for all these objects and measured their radial velocities. Results. Our targets turned out to be G and K supergiants, late (≥ M4) M giants, and M-type bright giants (luminosity class II) and supergiants. We found ~35 red supergiants with radial velocities similar to Stephenson 2 members, spread over the two areas surveyed. In addition, we found ~40 red supergiants with radial velocities incompatible in principle with a physical association. Conclusions. Our results show that Stephenson 2 is not an isolated cluster, but part of a huge structure likely containing hundreds of red supergiants, with radial velocities compatible with the terminal velocity at this Galactic longitude (and a distance ~6 kpc). In addition, we found evidence of several populations of massive stars at different distances along this line of sight.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evacuation route planning is a fundamental task for building engineering projects. Safety regulations are established so that all occupants are driven on time out of a building to a secure place when faced with an emergency situation. As an example, Spanish building code requires the planning of evacuation routes on large and, usually, public buildings. Engineers often plan these routes on single building projects, repeatedly assigning clusters of rooms to each emergency exit in a trial-and-error process. But problems may arise for a building complex where distribution and use changes make visual analysis cumbersome and sometimes unfeasible. This problem could be solved by using well-known spatial analysis techniques, implemented as a specialized software able to partially emulate engineer reasoning. In this paper we propose and test an easily reproducible methodology that makes use of free and open source software components for solving a case study. We ran a complete test on a building floor at the University of Alicante (Spain). This institution offers a web service (WFS) that allows retrieval of 2D geometries from any building within its campus. We demonstrate how geospatial technologies and computational geometry algorithms can be used for automating the creation and optimization of evacuation routes. In our case study, the engineers’ task is to verify that the load capacity of each emergency exit does not exceed the standards specified by Spain’s current regulations. Using Dijkstra’s algorithm, we obtain the shortest paths from every room to the most appropriate emergency exit. Once these paths are calculated, engineers can run simulations and validate, based on path statistics, different cluster configurations. Techniques and tools applied in this research would be helpful in the design and risk management phases of any complex building project.