4 resultados para classification algorithm
em Universidad de Alicante
Resumo:
his paper discusses a process to graphically view and analyze information obtained from a network of urban streets, using an algorithm that establishes a ranking of importance of the nodes of the network itself. The basis of this process is to quantify the network information obtained by assigning numerical values to each node, representing numerically the information. These values are used to construct a data matrix that allows us to apply a classification algorithm of nodes in a network in order of importance. From this numerical ranking of the nodes, the process finish with the graphical visualization of the network. An example is shown to illustrate the whole process.
Resumo:
In this paper, we present a novel coarse-to-fine visual localization approach: contextual visual localization. This approach relies on three elements: (i) a minimal-complexity classifier for performing fast coarse localization (submap classification); (ii) an optimized saliency detector which exploits the visual statistics of the submap; and (iii) a fast view-matching algorithm which filters initial matchings with a structural criterion. The latter algorithm yields fine localization. Our experiments show that these elements have been successfully integrated for solving the global localization problem. Context, that is, the awareness of being in a particular submap, is defined by a supervised classifier tuned for a minimal set of features. Visual context is exploited both for tuning (optimizing) the saliency detection process, and to select potential matching views in the visual database, close enough to the query view.
Resumo:
We propose and discuss a new centrality index for urban street patterns represented as networks in geographical space. This centrality measure, that we call ranking-betweenness centrality, combines the idea behind the random-walk betweenness centrality measure and the idea of ranking the nodes of a network produced by an adapted PageRank algorithm. We initially use a PageRank algorithm in which we are able to transform some information of the network that we want to analyze into numerical values. Numerical values summarizing the information are associated to each of the nodes by means of a data matrix. After running the adapted PageRank algorithm, a ranking of the nodes is obtained, according to their importance in the network. This classification is the starting point for applying an algorithm based on the random-walk betweenness centrality. A detailed example of a real urban street network is discussed in order to understand the process to evaluate the ranking-betweenness centrality proposed, performing some comparisons with other classical centrality measures.
Resumo:
Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training set. In turn, these schemes typically lower the performance accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this accuracy drop without the need of using all the training set. For that, given a new instance, the PS algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual classification is performed only considering the prototypes from the initial training set belonging to the suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more robust approach.