2 resultados para carbon nanostructures

em Universidad de Alicante


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a study of synthesising air-stable, nearly monodispersed bimetallic colloids of Co/Pd and Fe/Mo of varying compositions as active catalysts for the growth of carbon nanotubes. Using these catalysts we have investigated the effects of catalyst and substrate on the carbon nanostructures formed in a plasma-enhanced chemical vapour deposition (PECVD) process. We will show how it is possible to assess the influence of both the catalyst and the support on the controlled growth of carbon nanotube and nanofiber arrays. The importance of the composition of the catalytic nuclei will be put into perspective with other results from the literature. Furthermore, the influence of other synthetic parameters such as the nature of the nanoparticle catalysts will also be analysed and discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 adsorption has been measured in different types of graphitic nanostructures (MWCNTs, acid treated MWCNTs, graphene nanoribbons and pure graphene) in order to evaluate the effect of the different defective regions/conformations in the adsorption process, i.e., sp3 hybridized carbon, curved regions, edge defects, etc. This analysis has been performed both in pure carbon and nitrogen-doped nanostructures in order to monitor the effect of surface functional groups on surface created after using different treatments (i.e., acid treatment and thermal expansion of the MWCNTs), and study their adsorption properties. Interestingly, the presence of exposed defective regions in the acid treated nanostructures (e.g., uncapped nanotubes) gives rise to an improvement in the amount of CO2 adsorbed; the adsorption process being completely reversible. For N-doped nanostructures, the adsorption capacity is further enhanced when compared to the pure carbon nanotubes after the tubes were unzipped. The larger proportion of defect sites and curved regions together with the presence of stronger adsorbent–adsorbate interactions, through the nitrogen surface groups, explains their larger adsorption capacity.