2 resultados para carbon emission

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma–atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w− 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) has been employed to carry out the determination of both major anions and cations in water samples. The anion quantification has been performed by means of a new automatic accessory. In this device chloride has been determined by continuously adding a silver nitrate solution. As a result solid silver chloride particles are formed and retained on a nylon filter inserted in the line. The emission intensity is read at a silver characteristic wavelength. By plotting the drop in silver signal versus the chloride concentration, a straight line is obtained. As regards bicarbonate, this anion has been on-line transformed into carbon dioxide with the help of a 2.0 mol L−1 nitric acid stream. Carbon signal is linearly related with bicarbonate concentration. Finally, information about sulfate concentration has been achieved by means of the measurement of sulfur emission intensity. All the steps have been simultaneously and automatically performed. With this setup detection limits have been 1.0, 0.4 and 0.09 mg L−1 for chloride, bicarbonate and sulfate, respectively. Furthermore, it affords good precision with RSD below 6 %. Cation (Ca, Mg, Na and K) concentration, in turn, has been obtained by simultaneously reading the emission intensity at characteristic wavelengths. The obtained limits of detection have been 8 × 10−3, 2 × 10−3, 8 × 10−4 and 10−2 mg L−1 for sodium, potassium, magnesium and calcium, respectively. As regards sample throughput, about 30 samples h−1 can be analysed. Validation results have revealed that the obtained concentrations for these anions are not significantly different as compared to the data provided by conventional methods. Finally, by considering the data for anions and cations, precise ion balances have been obtained for well and mineral water samples.