3 resultados para brackish water reverse osmosis
em Universidad de Alicante
Resumo:
Desalinated brackish groundwater is becoming a new source of water supply to comply with growing water demands, especially in (semi-) arid countries. Recent publications show that some chemical compounds may persist in an unaltered form after the desalination processes and that there is an associated risk of mixing waters with different salinity for irrigation. At the university of Alicante campus (Spain), a mix of desalinated brackish groundwater and water from the existing aquifer is currently applied for landscape irrigation. The presence of 209 emerging compounds, surfactants, priority substances according to the 2008/105/EC Directive, 11 heavy metals and microbiological organisms in blended water and aquifer samples was investigated. Thirty-five compounds were detected (pesticides, pharmaceuticals and surfactants) among them two priority substances α-endosulfan and Ni were found above the permitted maximum concentration. Blended water used for landscape irrigation during the summer period is supersaturated with respect to carbonates, which may ultimately lead to mineral precipitation in the soil-aquifer media and changes in hydraulic parameters.
Resumo:
In this work we study Forward Osmosis (FO) as an emerging desalination technology, and its capability to replace totally or partially Reverse Osmosis (RO) in order to reduce the great amount of energy required in the current desalination plants. For this purpose, we propose a superstructure that includes both membrane based desalination technologies, allowing the selection of only one of the technologies or a combination of both of them seeking for the optimal configuration of the network. The optimization problem is solved for a seawater desalination plant with a given fresh water production. The results obtained show that the optimal solution combines both desalination technologies to reduce not only the energy consumption but also the total cost of the desalination process in comparison with the same plant but operating only with RO.
Resumo:
To study the possibility of producing better water quality from municipal wastewater, a membrane bioreactor (MBR) pilot plant with flat sheet (FS) and hollow fiber (HF) membranes coupled with another pilot plant equipped with nanofiltration (NF)/reverse osmosis (RO) membranes were operated to treat municipal wastewater from the wastewater treatment plant (WWTP) Rincón de León, Alicante (Spain). This study was focused on improving the quality of the permeate obtained from the MBR process when complemented by NF or RO stages with respect to salinity, organic matter and nutrients. Furthermore, the removal efficiencies of 10 EMPs were evaluated, comparing the reductions achieved between the wastewater treatment by MBR (adsorption to sludge and biodegradation) and the later treatment using NF or RO (mainly size exclusion). The results showed that the high quality of water was obtained which is appropriate for reuse with salinity removal efficiencies higher than 97%, 96% for total organic carbon (TOC), 91% for nitrates View the MathML sourceNO3- and 99% for total phosphorous (TP). High removal efficiencies were obtained for the majority of the analyzed EMP compounds.