5 resultados para biodiesel
em Universidad de Alicante
Resumo:
Different catalysts, based on heteropolyacids supported on activated carbon fibers, have been prepared for palmitic acid esterification reaction. The influence of the catalyst (heteropolyacid) and the support on the catalytic activity have been analyzed. The results prove that an adequate combination of both is required to achieve the most suitable catalysts. Regarding to the heteropolyacid, phosphomolybdic acid seems to be the most suitable appropriate taking into account its lowest leaching. About the support, it must show an optimum microporosity, which must be wide enough to allow the entrance and exit of the reagents and products but not too wide in order to avoid the leaching of the catalyst. In addition, both decreasing of the catalytic activity and its recovery over several cycles have been analyzed.
Resumo:
In this study wastewater treatment plant (WWTP) sludge was subjected to a reactive pyrolysis treatment to produce a high quality pyro-oil. Sludge was treated in supercritical conditions in the presence of methanol using hexane as cosolvent in a high pressure lab-autoclave. The variables affecting the pyro-oil yield and the product quality, such as mass ratio of alcohol to sludge, presence of cosolvent and temperature, were investigated. It was found that the use of a non-polar cosolvent (hexane) presents advantages in the production of high quality pyro-oil from sludge: increase of the non-polar pyro-oil yield and a considerable reduction of the amount of methanol needed to carry out the transesterification of fatty acids present in the sludge.
Resumo:
Environmentally friendly sulfonated black carbon (BC) catalysts were prepared from biodiesel waste, glycerol. These black carbons (BCs) contain a high amount of acidic groups, mainly sulfonated and oxygenated groups. Furthermore, these catalysts show a high catalytic activity in the glycerol etherification reaction with tert-butyl alcohol, the activity being larger for the sample prepared with a higher glycerol:sulfuric acid ratio (1:3). The yield for mono-tert-butyl glycerol (MTBG), di-tert-butyl glycerol (DTBG) and tri-tert-butyl-glycerol (TTBG) were very similar to those obtained using a commercial resin, Amberlyst-15. Furthermore, experimental results show that the carbon with the lowest acidic surface group content, BC prepared in minor glycerol:sulfuric acid ratio (10:1), can be chemically treated after carbonization to achieve an improved catalytic activity. The activity of all BCs is high and very similar, about 50% and 20% for the MTBG and DTBG + TTBG, respectively.
Resumo:
Microalgae are very effective microorganisms for CO2 capturing and a promising source of lipids for biodiesel as well as other interesting compounds. Many different ways of exploitation of these organisms are being tested. This work presents a review of the state of the art of the research and development of thermochemical conversion of microalgae with a special focus on pyrolysis and hydrothermal liquefaction. Aspects related to the type of reactors, the products obtained and the analytical applications are covered. The actual reaction scheme of pyrolysis of microalgae is extremely complex because of the formation of over hundreds of intermediate products. Various kinetic models reported in the literature and in a previous study with experimental validations are presented in this review to provide the current status of the study.
Resumo:
Microalgae have many applications, such as biodiesel production or food supplement. Depending on the application, the optimization of certain fractions of the biochemical composition (proteins, carbohydrates and lipids) is required. Therefore, samples obtained in different culture conditions must be analyzed in order to compare the content of such fractions. Nevertheless, traditional methods necessitate lengthy analytical procedures with prolonged sample turn-around times. Results of the biochemical composition of Nannochloropsis oculata samples with different protein, carbohydrate and lipid contents obtained by conventional analytical methods have been compared to those obtained by thermogravimetry (TGA) and a Pyroprobe device connected to a gas chromatograph with mass spectrometer detector (Py–GC/MS), showing a clear correlation. These results suggest a potential applicability of these techniques as fast and easy methods to qualitatively compare the biochemical composition of microalgal samples.