4 resultados para bio-active membrane
em Universidad de Alicante
Resumo:
In the current study, the relationship between current and biomass and bio-adhesion mechanism of electrogenic biofilm on electrode were investigated using EQCM and ATR-SEIRAS linking electrochemistry. The results indicated that cellular biomass of biofilm on QCM-crystal surface showed maximum value of 6.0 μg/cm2 in initial batch and 11.5 μg/cm2 in the second batch on mature biofilm, producing a similar maximum current density of 110 μA/μg. Especially, the optimum cell biomass linking high electricity production ratio (110 μA/μg) occurred before maximum biomass coming, implying that over-growth mature biofilm is not an optimum state for enhancing power output of MFCs. On the other hand, the spectra using ATR-SEIRAS technique linking electrochemistry obviously exhibited water structure adsorption change at early biofilm formation and meanwhile the water adsorption accompanied the adsorbed bacteria and the bound cells population on the electrode increased with time. Meanwhile, the direct contact of bacteria and electrode via outer-membrane protein can be confirmed via a series spectra shift at amide I and amide II modes and water movement from negative bands displacing by adsorbed bacteria. Our study provided supplementary information about the interaction between the microbes and electrode beyond traditional electrochemistry.
Resumo:
Active edible films were prepared by adding carvacrol into sodium caseinate (SC) and calcium caseinate (CC) matrices plasticized with two different glycerol concentrations (25 and 35 wt%) prepared by solvent casting. Functional characterisation of these bio-films was carried out by determination of some of their physico-chemical properties, such as colour, transparency, oxygen barrier, wettability, dye permeation properties and antibacterial effectiveness against Gram negative and Gram positive bacteria. All films exhibited good performance in terms of optical properties in the CIELab space showing high transparency. Carvacrol was able to reduce CC oxygen permeability and slightly increased the surface hydrophobicity. Dye diffusion experiments were performed to evaluate permeation properties. The diffusion of dye through films revealed that SC was more permeable than CC. The agar diffusion method was used for the evaluation of the films antimicrobial effectiveness against Escherichia coli and Staphylococcus aureus. Both SC and CC edible films with carvacrol showed inhibitory effects on both bacteria.
Resumo:
Bio-based films formed by poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) plasticized with an oligomer of the lactic acid (OLA) were used as supporting matrices for an antibacterial agent (carvacrol). This paper reports the main features of the processing and physico-chemical characterization of these innovative biodegradable material based films, which were extruded and further submitted to filmature process. The effect of the addition of carvacrol and OLA on their microstructure, chemical, thermal and mechanical properties was assessed. The presence of these additives did not affect the thermal stability of PLA_PHB films, but resulted in a decrease in their crystallinity and in the elastic modulus for the active formulations. The obtained results showed the effective presence of additives in the PLA or the PLA_PHB matrix after processing at high temperatures, making them able to be used in active and bio-based formulations with antioxidant/antimicrobial performance.
Resumo:
In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.