2 resultados para automated thematic analysis of textual data
em Universidad de Alicante
Resumo:
Participation trends in 6-hour ultra-marathons held word-wide were investigated to gain basic demographic data on 6-hour ultra-marathoners and where these races took place. Participation trends and the association between nationality and race performance were investigated in all 6-hour races held worldwide between 1991 and 2010. Participation increased linearly in both women and men across years. The annual number of finishes was significantly higher in men than in women (P=0.013). The male-to-female ratio remained stable at ~4 since 1991. Runners in age group 45-49 years showed the largest increase in participation for both men (800 participants in 18 years) and women (208 participants in 16 years). Europe attracted most of the runners from other continents (166 runners), more than all other continents combined (55 runners). European runners also showed the best top ten performances (73±3 km for women and 77±11 km for men), while African (with 65±9 km for men) and South American (54±4 km for women and 65±2 km for men) runners showed the weakest. To summarize, participation in 6-hour ultra-marathons increased across years. Most of the development took place in Europe and in athletes in the age group 45-49 years. Europe also attracted the most diverse field of athletes with runners from all other continents. European runners accounted for the most runners and achieved the best top ten performances.
Resumo:
In this work we present a semantic framework suitable of being used as support tool for recommender systems. Our purpose is to use the semantic information provided by a set of integrated resources to enrich texts by conducting different NLP tasks: WSD, domain classification, semantic similarities and sentiment analysis. After obtaining the textual semantic enrichment we would be able to recommend similar content or even to rate texts according to different dimensions. First of all, we describe the main characteristics of the semantic integrated resources with an exhaustive evaluation. Next, we demonstrate the usefulness of our resource in different NLP tasks and campaigns. Moreover, we present a combination of different NLP approaches that provide enough knowledge for being used as support tool for recommender systems. Finally, we illustrate a case of study with information related to movies and TV series to demonstrate that our framework works properly.