3 resultados para applied sciences

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work is to study the dynamic behavior of a pedestrian bridge in Alicante, Spain. It is a very slender footbridge with vertical and horizontal vibration problems during the passage of pedestrians. Accelerations have been recorded by accelerometers installed at various locations of the bridge. Two scenarios, in free vibration (after the passage of a certain number of pedestrians on the bridge) and forced vibration produced by a fixed number of pedestrians walking on the bridge at a certain speed and frequency. In each test, the effect on the comfort of the pedestrians, the natural frequencies of vibration, the mode shapes and damping factors have been estimated. It has been found that the acceleration levels are much higher than the allowable by the Spanish standards and this should be considered in the restoration of the footbridge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some chiral β-amino alcohols have been evaluated as potential ligands for the ruthenium-catalyzed asymmetric transfer hydrogenation (ATH) of N-phosphinyl ketimines in isopropyl alcohol. The ruthenium complex prepared from [RuCl2(p-cymene)]2 and (1S,2R)-1-amino-2-indanol has shown to be an efficient catalyst for the ATH of several N-(diphenylphosphinyl)imines, affording the reduction products in very good isolated yields and enantiomeric excesses up to 82%. The inherent rigidity of the indane ring system present in the ligand seems to be very important to achieve good enantioselectivities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.