8 resultados para applicazione, business analysis, data mining, Facebook, PRIN, relazioni sociali, social network

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citizens demand more and more data for making decisions in their daily life. Therefore, mechanisms that allow citizens to understand and analyze linked open data (LOD) in a user-friendly manner are highly required. To this aim, the concept of Open Business Intelligence (OpenBI) is introduced in this position paper. OpenBI facilitates non-expert users to (i) analyze and visualize LOD, thus generating actionable information by means of reporting, OLAP analysis, dashboards or data mining; and to (ii) share the new acquired information as LOD to be reused by anyone. One of the most challenging issues of OpenBI is related to data mining, since non-experts (as citizens) need guidance during preprocessing and application of mining algorithms due to the complexity of the mining process and the low quality of the data sources. This is even worst when dealing with LOD, not only because of the different kind of links among data, but also because of its high dimensionality. As a consequence, in this position paper we advocate that data mining for OpenBI requires data quality-aware mechanisms for guiding non-expert users in obtaining and sharing the most reliable knowledge from the available LOD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en las XVI Jornadas de Ingeniería del Software y Bases de Datos, JISBD 2011, A Coruña, 5-7 septiembre 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary research demonstrated the EmotiBlog annotated corpus relevance as a Machine Learning resource to detect subjective data. In this paper we compare EmotiBlog with the JRC Quotes corpus in order to check the robustness of its annotation. We concentrate on its coarse-grained labels and carry out a deep Machine Learning experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC Quotes corpus demonstrating the EmotiBlog validity as a resource for the SA task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental, cultural and socio-economic causes and consequences of farmland abandonment are issues of increasing concern for researchers and policy makers. In previous studies, we proposed a new methodology for selecting the driving factors in farmland abandonment processes. Using Data Mining and GIS, it is possible to select those variables which are more significantly related to abandonment. The aim of this study is to investigate the application of the above mentioned methodology for finding relationships between relief and farmland abandonment in a Mediterranean region (SE Spain).We have taken into account up to 28 different variables in a single analysis, some of them commonly considered in land use change studies (slope, altitude, TWI, etc), but also other novel variables have been evaluated (sky view factor, terrain view factor, etc). The variable selection process provides results in line with the previous knowledge of the study area, describing some processes that are region specific (e.g. abandonment versus intensification of the agricultural activities). The European INSPIRE Directive (2007/2/EC) establishes that the digital elevation models for land surfaces should be available in all member countries, this means that the research described in this work can be extrapolated to any European country to determine whether these variables (slope, altitude, etc) are important in the process of abandonment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Análisis multivariante de Componentes Principales (PCA)