3 resultados para anchor

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a small case series that provides preliminary evidence of the usefulness of a new capsule-anchoring device for the management of subluxated cataracts. Three eyes of 3 patients with traumatic subluxated cataract causing a significant visual loss were enrolled. Phacoemulsification was performed in all cases with implantation of a capsule-anchoring device (AssiAnchor) because partial zonular dehiscence was present. A significant visual improvement was achieved in the 3 cases. The capsular bag was well centered and the anchors firmly attached to the capsulorhexis and sclera at 12 months postoperatively. The capsule-anchoring device was helpful in managing traumatic subluxated cataracts, enabling effective centration of the intraocular lens–capsular bag complex and, consequently, effective visual restoration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical behaviour of transventilated façades performed by natural stone is necessarily based on the correct execution of both anchoring elements on the stone cladding as in the ones corresponding to the enclosure support, either with brick masonry walls or reinforced concrete walls. In the case studied in the present work, the origin of the damages suffered on the façade of a building located in Alcoy has been analyzed, where the detachment of part of the outer enclosure occurred. This enclosure is a transventilated façade formed by Bateig Blue stone tiles. To this end, “in situ” tests of the anchoring systems employed have been performed, as well as laboratory tests of mechanical characterization of the material and of different types of anchor, comparing these results with those obtained in both the simplified analytical models of continuum mechanics as developed by the Finite Element Method (FEM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.