2 resultados para airborne laser scanning

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different types of land use are usually present in the areas adjacent to many shallow karst cavities. Over time, the increasing amount of potentially harmful matter and energy, of mainly anthropic origin or influence, that reaches the interior of a shallow karst cavity can modify the hypogeal ecosystem and increase the risk of damage to the Palaeolithic rock art often preserved within the cavity. This study proposes a new Protected Area status based on the geological processes that control these matter and energy fluxes into the Altamira cave karst system. Analysis of the geological characteristics of the shallow karst system shows that direct and lateral infiltration, internal water circulation, ventilation, gas exchange and transmission of vibrations are the processes that control these matter and energy fluxes into the cave. This study applies a comprehensive methodological approach based on Geographic Information Systems (GIS) to establish the area of influence of each transfer process. The stratigraphic and structural characteristics of the interior of the cave were determined using 3D Laser Scanning topography combined with classical field work, data gathering, cartography and a porosity–permeability analysis of host rock samples. As a result, it was possible to determine the hydrogeological behavior of the cave. In addition, by mapping and modeling the surface parameters it was possible to identify the main features restricting hydrological behavior and hence direct and lateral infiltration into the cave. These surface parameters included the shape of the drainage network and a geomorphological and structural characterization via digital terrain models. Geological and geomorphological maps and models integrated into the GIS environment defined the areas involved in gas exchange and ventilation processes. Likewise, areas that could potentially transmit vibrations directly into the cave were identified. This study shows that it is possible to define a Protected Area by quantifying the area of influence related to each transfer process. The combined maximum area of influence of all the processes will result in the new Protected Area. This area will thus encompass all the processes that account for most of the matter and energy carried into the cave and will fulfill the criteria used to define the Protected Area. This methodology is based on the spatial quantification of processes and entities of geological origin and can therefore be applied to any shallow karst system that requires protection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complete characterization of rock masses implies the acquisition of information of both, the materials which compose the rock mass and the discontinuities which divide the outcrop. Recent advances in the use of remote sensing techniques – such as Light Detection and Ranging (LiDAR) – allow the accurate and dense acquisition of 3D information that can be used for the characterization of discontinuities. This work presents a novel methodology which allows the calculation of the normal spacing of persistent and non-persistent discontinuity sets using 3D point cloud datasets considering the three dimensional relationships between clusters. This approach requires that the 3D dataset has been previously classified. This implies that discontinuity sets are previously extracted, every single point is labeled with its corresponding discontinuity set and every exposed planar surface is analytically calculated. Then, for each discontinuity set the method calculates the normal spacing between an exposed plane and its nearest one considering 3D space relationship. This link between planes is obtained calculating for every point its nearest point member of the same discontinuity set, which provides its nearest plane. This allows calculating the normal spacing for every plane. Finally, the normal spacing is calculated as the mean value of all the normal spacings for each discontinuity set. The methodology is validated through three cases of study using synthetic data and 3D laser scanning datasets. The first case illustrates the fundamentals and the performance of the proposed methodology. The second and the third cases of study correspond to two rock slopes for which datasets were acquired using a 3D laser scanner. The second case study has shown that results obtained from the traditional and the proposed approaches are reasonably similar. Nevertheless, a discrepancy between both approaches has been found when the exposed planes members of a discontinuity set were hard to identify and when the planes pairing was difficult to establish during the fieldwork campaign. The third case study also has evidenced that when the number of identified exposed planes is high, the calculated normal spacing using the proposed approach is minor than those using the traditional approach.