3 resultados para acidity and basicity
em Universidad de Alicante
Resumo:
Supported iron oxide nanoparticles have been incorporated onto hierarchical zeolites by microwave-assisted impregnation and mechanochemical grinding. Nanoparticle-functionalised porous zeolites were characterised by a number of analytical techniques such as XRD, N2 physisorption, TEM, and surface acidity measurements. The catalytic activities of the synthesised nanomaterials were investigated in an alkylation reaction. The results pointed to different species with varying acidity and accessibility in the materials, which provided essentially different catalytic activities in the alkylation of toluene with benzyl chloride under microwave irradiation, selected as the test reaction.
Resumo:
Simulated cold-start tests have been carried out to evaluate the performance of H-ZSM-5 and H-BETA zeolites as hydrocarbon traps under simulated gasoline car exhaust gases, paying special attention to the effect of water on their behaviour. It is concluded that the hydrothermal treatment of the zeolites in the acidic form contributes to the better performance of these materials as hydrocarbon traps since the stabilization of the zeolites takes place. Moreover, the decrease of the surface acidity of the zeolites results in an increase of the Si/Al ratio, which contributes to the decrease of the water affinity for adsorption sites. Thus, the competition with hydrocarbon molecules in the exhaust for the adsorption sites is reduced which increases their trap efficiency. The stabilized H-ZSM-5 is the zeolite that showed the best performance with a propene offset temperature of 240 °C, which should be high enough for the three-way catalyst to carry out its role as catalytic converter.
Resumo:
Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed.