10 resultados para Zwitterions Derived from N-Heterocycles
em Universidad de Alicante
Resumo:
Tide gauge (TG) data along the northern Mediterranean and Black Sea coasts are compared to the sea-surface height (SSH) anomaly obtained from ocean altimetry (TOPEX/Poseidon and ERS-1/2) for a period of nine years (1993–2001). The TG measures the SSH relative to the ground whereas the altimetry does so with respect to the geocentric reference frame; therefore their difference would be in principle a vertical ground motion of the TG sites, though there are different error sources for this estimate as is discussed in the paper. In this study we estimate such vertical ground motion, for each TG site, from the slope of the SSH time series of the (non-seasonal) difference between the TG record and the altimetry measurement at a point closest to the TG. Where possible, these estimates are further compared with those derived from nearby continuous Global Positioning System (GPS) data series. These results on vertical ground motion along the Mediterranean and Black Sea coasts provide useful source data for studying, contrasting, and constraining tectonic models of the region. For example, in the eastern coast of the Adriatic Sea and in the western coast of Greece, a general subsidence is observed which may be related to the Adriatic lithosphere subducting beneath the Eurasian plate along the Dinarides fault.
Resumo:
New data reveal Early Burdigalian ‘Numidian-like lithofacies’ in successions of the internal (southernmost) part of the South Iberian Margin (SIM) and the south-western margin of the Mesomediterranean Microplate (MM). The well-known Numidian Formation was deposited in the external (Massylian) sub-domain of the Maghrebian Flysch Basin (a south-western branch of the Tethys Ocean). The anomalous occurrence of ‘Numidian-like lithofacies’ is induced by the particular Early Miocene palaeogeographical and geodynamic complexity of the sector. This consisted of a ‘triple point’ with a dextral transform fault between the SIM and the MM-Maghrebian Flysch Basin system. In this framework, the ageing of Iberian reliefs and the MM collapse, coupled with an African Margin upbulging, and a shortening of the Maghrebian Flysch Basin (both related to the subduction), could have resulted in the arrival of the Numidian depositional system from so far away.
Resumo:
In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.
Resumo:
This paper presents a method for the fast calculation of a robot’s egomotion using visual features. The method is part of a complete system for automatic map building and Simultaneous Location and Mapping (SLAM). The method uses optical flow to determine whether the robot has undergone a movement. If so, some visual features that do not satisfy several criteria are deleted, and then egomotion is calculated. Thus, the proposed method improves the efficiency of the whole process because not all the data is processed. We use a state-of-the-art algorithm (TORO) to rectify the map and solve the SLAM problem. Additionally, a study of different visual detectors and descriptors has been conducted to identify which of them are more suitable for the SLAM problem. Finally, a navigation method is described using the map obtained from the SLAM solution.
Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO2 Adsorption
Resumo:
A series of activated carbons were prepared by carbonization of polyaniline at different temperatures, using KOH or K2CO3 as activating agent. Pure microporous or micro/mesoporous activated carbons were obtained depending on the preparation conditions. Carbonization temperature has been proven to be a key parameter to define the textural properties of the carbon when using KOH. Low carbonization temperatures (400–650 °C) yield materials with a highly developed micro- and mesoporous structure, whereas high temperatures (800 °C) yield microporous carbons. Some of the materials prepared using KOH exhibit a BET surface area superior to 4000 m2/g, with total pore volume exceeding 2.5 cm3/g, which are among the largest found for activated carbons. On the other hand, microporous materials are obtained when using K2CO3, independently of carbonization temperature. Some of the materials were tested for CO2 capture due to their high microporosity and N content. The adsorption capacity for CO2 at atmospheric pressure and 0 °C achieves a value of ∼7.6 mmol CO2/g, which is among the largest reported in the literature. This study provides guidelines for the design of activated carbons with a proper N/C ratio for CO2 capture at atmospheric pressure.
Resumo:
A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.
Resumo:
The enantioselective binap–silver catalyzed multicomponent 1,3-dipolar cycloaddition using ethyl glyoxylate, phenylalanine ethyl ester, and maleimides is described. The employment of basic silver carbonate allows the reaction to take place in the absence of an extra base giving high yields and ee. In addition, low-level calculations regarding the importance of the benzyl substituent at the α-position of the amino ester justify the expected absolute configuration of the final cycloadducts and the observed high enantiodiscrimination.
Resumo:
We compare the pore size distribution of a well-characterized activated carbon derived from model-dependent, adsorption integral equation (AIE) methods with those from model-independent, immersion calorimetry and isosteric heat analyses. The AIE approach applied to nitrogen gave a mean pore width of 0.57 nm; the CO2 distribution exhibited wider dispersion. Spherical model application to CO2 and diffusion limitations for nitrogen and argon were proposed as primary reasons for inconsistency. Immersion enthalpy revealed a sharp decrease in available area equivalent to a cut-off due to molecular exclusion when the accessible surface was assessed against probe kinetic diameter. Mean pore width was identified as 0.58 ± 0.02 nm, endorsing the underlying assumptions for the nitrogen-based AIE approach. A comparison of the zero-coverage isosteric heat of adsorption for various non-polar adsorptives by the porous test sample was compared with the same adsorptives in contact with a non-porous reference adsorbent, leading to an energy ratio or adsorption enhancement factor. A linear relationship between the energy ratio and probe kinetic diameter indicated a primary pore size at 0.59 nm. The advantage of this enthalpy, model-independent methods over AIE were due to no assumptions regarding probe molecular shape, and no assumptions for pore shape and/or connectivity.
Resumo:
Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, 5 single cell clones were isolated (generally called 1.X and 3.X) from 2 volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1.10 and 1.22 expressed the lowest amounts, while clones 3.10 and 3.5 expressed more CD105 than the rest and clone 1.7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of IL-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of pro-inflammatory cytokines such as IL-1β, while clones 1.10 and 1.22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are altogether more potent inhibitors than clones 3.X for proliferation of total, CD3+T, CD4+T and CD8+T lymphocytes and NK cells. The results of this work indicates that adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies.
Resumo:
Acid pretreatment of lignocellulosic biomass, required for bioethanol production, generates large amounts of by-products, such as lignin and hydrolyzed hemicellulose fractions, which have found so far very limited applications. In this work, we demonstrate how the recovered hemicellulose hydrolysis products can be effectively utilized as a precursor for the synthesis of functional carbon materials through hydrothermal carbonization (HTC). The morphology and chemical structure of the synthesized HTC carbons are thoroughly characterized to highlight their similarities with glucose-derived HTC carbons. Furthermore, two routes for introducing porosity within the HTC carbon structure are presented: i) silica nanoparticle hard-templating, which is shown to be a viable method for the synthesis of carbonaceous hollow spheres; and ii) KOH chemical activation. The synthesized activated carbons (ACs) show an extremely high porosity (pore volume≈1.0 cm3 g−1) mostly composed of micropores (90 % of total pore volume). Because of their favorable textural properties, the ACs are further tested as electrodes for supercapacitors, yielding very promising results (300 F g−1 at 250 mA g−1) and confirming the high suitability of KOH-activated HTC carbons derived from spruce and corncob hydrolysis products as materials for electric double layer supercapacitors.