2 resultados para Zr

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

5% copper catalysts with Ce0.8M0.2Oδ supports (M = Zr, La, Ce, Pr or Nd) have been studied by rapid-scan operando DRIFTS for NOx Storage and Reduction (NSR) with high frequency (30 s) CO, H2 and 50%CO + 50%H2 micropulses. In the absence of reductant pulses, below 200–250 °C NOx was stored on the catalysts as nitrite and nitro groups, and above this temperature nitrates were the main species identified. The thermal stability of the NOx species stored on the catalysts depended on the acid/basic character of the dopant (M more acidic = NOx stored less stable ⇒ Zr4+ < none < Nd3+ < Pr3+ < La3+ ⇐ M more basic = NOx stored more stable). Catalysts regeneration was more efficient with H2 than with CO, and the CO + H2 mixture presented an intermediate behavior, but with smaller differences among the series of catalyst than observed using CO alone. N2 is the main NOx reduction product upon H2 regeneration. The highest NOx removal in NSR experiments performed at 400 °C with CO + H2 pulses was achieved with the catalyst with the most basic dopant (CuO/Ce0.8La0.2Oδ) while the poorest performing catalyst was that with the most acidic dopant (CuO/Ce0.8Zr0.2Oδ). The poor performance of CuO/Ce0.8Zr0.2Oδ in NSR experiments with CO pulses was attributed to its lower oxidation capacity compared to the other catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CuO supported on CeO2 and Ce0.9X0.1O2, where X is Zr, La, Tb or Pr, were synthesized using nitrate precursors, giving rise ceria based materials with a small particle size which interact with CuO species generating a high amount of interfacial sites. The incorporation of cations to the ceria framework modifies the CeO2 lattice parameter, improving the redox behavior of the catalytic system. The catalysts were characterized by X-ray fluorescence spectrometry (XRFS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, thermoprogrammed reduction with H2 (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The catalysts were tested in the preferential oxidation of CO under a H2-rich stream (CO-PROX), reaching conversion values higher than 95% between 115 and 140 °C and being the catalyst with 6 wt.% of Cu supported on Ce0.9Zr0.1O2 (sample 6CUZRCE) the most active catalyst. The influence of the presence of CO2 and H2O was also studied simulating a PROX unit, taking place a decrease of the catalytic activity due to the inhibitor effect both CO2 and H2O.