3 resultados para Wurtemberg, Law of.

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of dielectric barrier discharge plasma treatment on zein film containing thymol as an active ingredient were evaluated. The plasma discharge was optically characterized to identify the reactive species. A significant increase in the film roughness (p < 0.05) was observed due to the etching effect of DBD plasma, which was correlated with the increase in the diffusion rate of thymol in the food simulant. The diffusion of thymol from the zein film was measured in aqueous solution. The kinetics of thymol release followed the Fick’s law of diffusion as shown by the high correlation coefficients between experimental and theoretical data. No significant change (p > 0.05) was observed for the thermal properties of the antimicrobial films after DBD plasma treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this report is to discuss the method of determination of lattice-fluid binary interaction parameters by comparing well characterized immiscible blends and block copolymers of poly(methyl methacrylate) (PMMA) and poly(ϵ−caprolactone) (PCL). Experimental pressure-volume-temperature (PVT) data in the liquid state were correlated with the Sanchez—Lacombe (SL) equation of state with the scaling parameters for mixtures and copolymers obtained through combination rules of the characteristic parameters for the pure homopolymers. The lattice-fluid binary parameters for energy and volume were higher than those of block copolymers implying that the copolymers were more compatible due to the chemical links between the blocks. Therefore, a common parameter cannot account for both homopolymer blend and block copolymer phase behaviors based on current theory. As we were able to adjust all data of the mixtures with a single set of lattice-binary parameters and all data of the block copolymers with another single set we can conclude that both parameters did not depend on the composition for this system. This characteristic, plus the fact that the additivity law of specific volumes can be suitably applied for this system, allowed us to model the behavior of the immiscible blend with the SL equation of state. In addition, a discussion on the relationship between lattice-fluid binary parameters and the Flory–Huggins interaction parameter obtained from Leibler's theory is presented.