4 resultados para Wheel Spin Rate.

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin-relaxation time, the scanning tunnel microscope (STM) current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin-flip-assisted tunneling experiments, including a single Mn atom, a Mn dimer, and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the nonequilibrium spin dynamics of the magnetic atom results in nonmonotonic dI/dV curves. In the case of spin-polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or antiparallel to the magnetic moment of the tip. Thus, spin-polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study single-electron transport through a graphene quantum dot with magnetic adsorbates. We focus on the relation between the spin order of the adsorbates and the linear conductance of the device. The electronic structure of the graphene dot with magnetic adsorbates is modeled through numerical diagonalization of a tight-binding model with an exchange potential. We consider several mechanisms by which the adsorbate magnetic state can influence transport in a single-electron transistor: tuning the addition energy, changing the tunneling rate, and in the case of spin-polarized electrodes, through magnetoresistive effects. Whereas the first mechanism is always present, the others require that the electrode has to have either an energy- or spin-dependent density of states. We find that graphene dots are optimal systems to detect the spin state of a few magnetic centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered nonperturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples and we find values in the microsecond range at room temperature. Interestingly, this mechanism is anisotropic on two counts. First, the relaxation rate is different for off-plane and in-plane spin quantization axis. Second, the spin relaxation rate depends on the angle formed by the crystal momentum with the carbon-carbon bond. In addition, the spin lifetime is also valley dependent. The proposed mechanism sets an upper limit for spin lifetimes in graphene and will be relevant when samples of high quality can be fabricated free of extrinsic sources of spin relaxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spin dynamics of all ferromagnetic materials are governed by two types of collective phenomenon: spin waves and domain walls. The fundamental processes underlying these collective modes, such as exchange interactions and magnetic anisotropy, all originate at the atomic scale. However, conventional probing techniques based on neutron1 and photon scattering2 provide high resolution in reciprocal space, and thereby poor spatial resolution. Here we present direct imaging of standing spin waves in individual chains of ferromagnetically coupled S = 2 Fe atoms, assembled one by one on a Cu2N surface using a scanning tunnelling microscope. We are able to map the spin dynamics of these designer nanomagnets with atomic resolution in two complementary ways. First, atom-to-atom variations of the amplitude of the quantized spin-wave excitations are probed using inelastic electron tunnelling spectroscopy. Second, we observe slow stochastic switching between two opposite magnetization states3, 4, whose rate varies strongly depending on the location of the tip along the chain. Our observations, combined with model calculations, reveal that switches of the chain are initiated by a spin-wave excited state that has its antinodes at the edges of the chain, followed by a domain wall shifting through the chain from one end to the other. This approach opens the way towards atomic-scale imaging of other types of spin excitation, such as spinon pairs and fractional end-states5, 6, in engineered spin chains.