1 resultado para Weak classifiers
em Universidad de Alicante
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (14)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (35)
- Boston University Digital Common (10)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (29)
- Center for Jewish History Digital Collections (1)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (33)
- Cochin University of Science & Technology (CUSAT), India (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (28)
- Helda - Digital Repository of University of Helsinki (41)
- Indian Institute of Science - Bangalore - Índia (108)
- Instituto Politécnico de Leiria (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (40)
- Queensland University of Technology - ePrints Archive (374)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (16)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (2)
- University of Michigan (7)
- University of Queensland eSpace - Australia (12)
- WestminsterResearch - UK (1)
Resumo:
This paper proposes a new feature representation method based on the construction of a Confidence Matrix (CM). This representation consists of posterior probability values provided by several weak classifiers, each one trained and used in different sets of features from the original sample. The CM allows the final classifier to abstract itself from discovering underlying groups of features. In this work the CM is applied to isolated character image recognition, for which several set of features can be extracted from each sample. Experimentation has shown that the use of CM permits a significant improvement in accuracy in most cases, while the others remain the same. The results were obtained after experimenting with four well-known corpora, using evolved meta-classifiers with the k-Nearest Neighbor rule as a weak classifier and by applying statistical significance tests.