1 resultado para WIRE
em Universidad de Alicante
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (23)
- Archive of European Integration (16)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (5)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (2)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (14)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (23)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (170)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Digital Commons @ DU | University of Denver Research (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Earth Simulator Research Results Repository (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (103)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (4)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (83)
- Queensland University of Technology - ePrints Archive (51)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (124)
- Royal College of Art Research Repository - Uninet Kingdom (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (9)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universidade Metodista de São Paulo (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (1)
- University of Michigan (79)
- University of Queensland eSpace - Australia (3)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nanostructures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett model, we provide a general analytical expression of the electromagnetic fields that can propagate along the direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of diffraction.