3 resultados para Viterbi-based algorithm

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose and discuss a new centrality index for urban street patterns represented as networks in geographical space. This centrality measure, that we call ranking-betweenness centrality, combines the idea behind the random-walk betweenness centrality measure and the idea of ranking the nodes of a network produced by an adapted PageRank algorithm. We initially use a PageRank algorithm in which we are able to transform some information of the network that we want to analyze into numerical values. Numerical values summarizing the information are associated to each of the nodes by means of a data matrix. After running the adapted PageRank algorithm, a ranking of the nodes is obtained, according to their importance in the network. This classification is the starting point for applying an algorithm based on the random-walk betweenness centrality. A detailed example of a real urban street network is discussed in order to understand the process to evaluate the ranking-betweenness centrality proposed, performing some comparisons with other classical centrality measures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an extension of the logic outer-approximation algorithm for dealing with disjunctive discrete-continuous optimal control problems whose dynamic behavior is modeled in terms of differential-algebraic equations. Although the proposed algorithm can be applied to a wide variety of discrete-continuous optimal control problems, we are mainly interested in problems where disjunctions are also present. Disjunctions are included to take into account only certain parts of the underlying model which become relevant under some processing conditions. By doing so the numerical robustness of the optimization algorithm improves since those parts of the model that are not active are discarded leading to a reduced size problem and avoiding potential model singularities. We test the proposed algorithm using three examples of different complex dynamic behavior. In all the case studies the number of iterations and the computational effort required to obtain the optimal solutions is modest and the solutions are relatively easy to find.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.