6 resultados para Visual form processing
em Universidad de Alicante
Resumo:
The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 105 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium-resolution (R ~ 20 000) GIRAFFE spectrograph and the high-resolution (R ~ 47 000) UVES spectrograph. In this paper we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, automatically performs sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is σ ~ 0.4 km s-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s-1) and to the radial velocities of the standard stars (~0.5 km s-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the set-ups and instruments used for the survey is be established.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR), Taipei, Taiwan, August 29-31, 2012.
Resumo:
Event-based visual servoing is a recently presented approach that performs the positioning of a robot using visual information only when it is required. From the basis of the classical image-based visual servoing control law, the scheme proposed in this paper can reduce the processing time at each loop iteration in some specific conditions. The proposed control method enters in action when an event deactivates the classical image-based controller (i.e. when there is no image available to perform the tracking of the visual features). A virtual camera is then moved through a straight line path towards the desired position. The virtual path used to guide the robot improves the behavior of the previous event-based visual servoing proposal.
Resumo:
New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.
Resumo:
A large part of the new generation of computer numerical control systems has adopted an architecture based on robotic systems. This architecture improves the implementation of many manufacturing processes in terms of flexibility, efficiency, accuracy and velocity. This paper presents a 4-axis robot tool based on a joint structure whose primary use is to perform complex machining shapes in some non-contact processes. A new dynamic visual controller is proposed in order to control the 4-axis joint structure, where image information is used in the control loop to guide the robot tool in the machining task. In addition, this controller eliminates the chaotic joint behavior which appears during tracking of the quasi-repetitive trajectories required in machining processes. Moreover, this robot tool can be coupled to a manipulator robot in order to form a multi-robot platform for complex manufacturing tasks. Therefore, the robot tool could perform a machining task using a piece grasped from the workspace by a manipulator robot. This manipulator robot could be guided by using visual information given by the robot tool, thereby obtaining an intelligent multi-robot platform controlled by only one camera.
Resumo:
The retina is a very complex neural structure, which performs spatial, temporal, and chromatic processing on visual information and converts it into a compact ‘digital’ format composed of neural impulses. This paper presents a new compiler-based framework able to describe, simulate and validate custom retina models. The framework is compatible with the most usual neural recording and analysis tools, taking advantage of the interoperability with these kinds of applications. Furthermore it is possible to compile the code to generate accelerated versions of the visual processing models compatible with COTS microprocessors, FPGAs or GPUs. The whole system represents an ongoing work to design and develop a functional visual neuroprosthesis. Several case studies are described to assess the effectiveness and usefulness of the framework.