4 resultados para Virtual construction simulation
em Universidad de Alicante
Resumo:
The potential of integrating multiagent systems and virtual environments has not been exploited to its whole extent. This paper proposes a model based on grammars, called Minerva, to construct complex virtual environments that integrate the features of agents. A virtual world is described as a set of dynamic and static elements. The static part is represented by a sequence of primitives and transformations and the dynamic elements by a series of agents. Agent activation and communication is achieved using events, created by the so-called event generators. The grammar defines a descriptive language with a simple syntax and a semantics, defined by functions. The semantics functions allow the scene to be displayed in a graphics device, and the description of the activities of the agents, including artificial intelligence algorithms and reactions to physical phenomena. To illustrate the use of Minerva, a practical example is presented: a simple robot simulator that considers the basic features of a typical robot. The result is a functional simple simulator. Minerva is a reusable, integral, and generic system, which can be easily scaled, adapted, and improved. The description of the virtual scene is independent from its representation and the elements that it interacts with.
Resumo:
This article presents an interactive Java software platform which enables any user to easily create advanced virtual laboratories (VLs) for Robotics. This novel tool provides both support for developing applications with full 3D interactive graphical interface and a complete functional framework for modelling and simulation of arbitrary serial-link manipulators. In addition, its software architecture contains a high number of functionalities included as high-level tools, with the advantage of allowing any user to easily develop complex interactive robotic simulations with a minimum of programming. In order to show the features of the platform, the article describes, step-by-step, the implementation methodology of a complete VL for Robotics education using the presented approach. Finally, some educational results about the experience of implementing this approach are reported.
Resumo:
Building Information Modelling (BIM) provides a shared source of information about a built asset, which creates a collaborative virtual environment for project teams. Literature suggests that to collaborate efficiently, the relationship between the project team is based on sympathy, obligation, trust and rapport. Communication increases in importance when working collaboratively but effective communication can only be achieved when the stakeholders are willing to act, react, listen and share information. Case study research and interviews with Architecture, Engineering and Construction (AEC) industry experts suggest that synchronous face-to-face communication is project teams’ preferred method, allowing teams to socialise and build rapport, accelerating the creation of trust between the stakeholders. However, virtual unified communication platforms are a close second-preferred option for communication between the teams. Effective methods for virtual communication in professional practice, such as virtual collaboration environments (CVE), that build trust and achieve similar spontaneous responses as face-to-face communication, are necessary to face the global challenges and can be achieved with the right people, processes and technology. This research paper investigates current industry methods for virtual communication within BIM projects and explores the suitability of avatar interaction in a collaborative virtual environment as an alternative to face-to-face communication to enhance collaboration between design teams’ professional practice on a project. Hence, this paper presents comparisons between the effectiveness of these communication methods within construction design teams with results of further experiments conducted to test recommendations for more efficient methods for virtual communication to add value in the workplace between design teams.
Resumo:
When the act of 'drawing' became what can only be called formalised, (whose growth can be said to have blossomed during the Renaissance), there developed a separation between the drawing and its procurement. Recently, David Ross Scheer, in his book ‘The Death of Drawing, Architecture in the Age of Simulation’ wrote: ‘…whereas architectural drawings exist to represent construction, architectural simulations exist to anticipate building performance.’ Meanwhile, Paolo Belardi, in his work ‘Why Architects Still Draw’ likens a drawing to an acorn, where he says: ‘It is the paradox of the acorn: a project emerges from a drawing – even from a sketch, rough and inchoate - just as an oak tree emerges from an acorn.’ He tells us that Giorgio Vasari would work late at night ‘seeking to solve the problems of perspective’ and he makes a passionate plea that this reflective process allows the concept to evolve, grow and/or develop. However, without belittling Belardi, the virtual model now needs this self-same treatment where it is nurtured, coaxed and encouraged to be the inchoate blueprint of the resultant oak tree. The model now too can embrace the creative process going through the first phase of preparation, where it focuses on the problem. The manipulation of the available material can then be incubated so that it is reasoned and generates feedback. This paper serves to align this shift in perception, methodologies and assess whether the 2D paper abstraction still has a purpose and role in today’s digital world!