3 resultados para Very-low

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe3O4 nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe3O4 NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition.