3 resultados para Valuation of environmental assets
em Universidad de Alicante
Resumo:
This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.
Resumo:
The growing economic and environmental importance of managing water resources at a global level also entails greater efforts and interest in improving the functioning and efficiency of the increasingly more numerous wastewater treatment plants (WWTPs). In this context, this study analyzes the efficiency of a uniform sample of plants of this type located in the region of Valencia (Spain). The type of efficiency measure used for this (conditional order-m efficiency) allows continuous and discrete contextual variables to be directly involved in the analysis and enables the assessment of their statistical significance and effect (positive or negative). The main findings of the study showed that the quality of the influent water and also the size and age of the plants had a significant influence on their efficiency levels. In particular, as regards the effect of such variables, the findings pointed to the existence of an inverse relationship between the quality of the influent water and the efficiency of the WWTPs. Also, a lower annual volume of treated water and more modern installations showed a positive influence. Additionally, the average efficiency levels observed turned out to be higher than those reported in previous studies.
Resumo:
In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mortars and their results are confirmed with those obtained using mercury intrusion porosimetry. The development of the pore network of mortars is affected by the environment. However, slag cement mortars are more influenced by temperature while the relative humidity has a greater influence on the OPC mortars. The results show that slag cement mortars hardened under non-optimal environments have a more refined microstructure than OPC mortars for the studied environmental conditions.