4 resultados para Vallenilla Lanz, Laureano
em Universidad de Alicante
Resumo:
This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.
Resumo:
Los tÃtulos de Formación Profesional (FP) de Grado Superior permiten el acceso a estudios universitarios; de hecho, es frecuente encontrar estudiantes que se matriculan en FP con este propósito. Para finalizar el Ciclo Formativo el último módulo que han de superar es el de Formación en Centros de Trabajo (FCT) en el que ponen en práctica los conocimientos adquiridos en las clases teóricas. Estas prácticas, además de mejorar sus capacidades profesionales, también suponen su primera inserción en el mundo laboral. Este contacto con la realidad les puede hacer cambiar su vocación inicial, reformulando su proyecto de futuro. En este estudio se lanzó una encuesta a nivel nacional a profesores y alumnos de FP para identificar y cuantificar el perfil de los estudiantes que cambian de idea, analizando qué les ha llevado a modificar su planteamiento inicial. Los resultados –aun provisionales- muestran que a lo largo de las prácticas, (1) aumenta el número de estudiantes que deciden continuar sus estudios en la Universidad y (2) uno de cada cinco cambia de preferencia sobre qué titulación le gustarÃa cursar.