8 resultados para Unicode Common Locale Data Repository
em Universidad de Alicante
Resumo:
PAS1192-2 (2013) outlines the “fundamental principles of Level 2 information modeling”, one of these principles is the use of what is commonly referred to as a Common Data Environment (CDE). A CDE could be described as an internet-enabled cloudhosting platform, accessible to all construction team members to access shared project information. For the construction sector to achieve increased productivity goals, the next generation of industry professionals will need to be educated in a way that provides them with an appreciation of Building Information Modelling (BIM) working methods, at all levels, including an understanding of how data in a CDE should be structured, managed, shared and published. This presents a challenge for educational institutions in terms of providing a CDE that addresses the requirements set out in PAS1192-2, and mirrors organisational and professional working practices without causing confusion due to over complexity. This paper presents the findings of a two-year study undertaken at Ulster University comparing the use of a leading industry CDE platform with one derived from the in-house Virtual Learning Environment (VLE), for the delivery of a student BIM project. The research methodology employed was a qualitative case study analysis, focusing on observations from the academics involved and feedback from students. The results of the study show advantages for both CDE platforms depending on the learning outcomes required.
Resumo:
Phase equilibrium data regression is an unavoidable task necessary to obtain the appropriate values for any model to be used in separation equipment design for chemical process simulation and optimization. The accuracy of this process depends on different factors such as the experimental data quality, the selected model and the calculation algorithm. The present paper summarizes the results and conclusions achieved in our research on the capabilities and limitations of the existing GE models and about strategies that can be included in the correlation algorithms to improve the convergence and avoid inconsistencies. The NRTL model has been selected as a representative local composition model. New capabilities of this model, but also several relevant limitations, have been identified and some examples of the application of a modified NRTL equation have been discussed. Furthermore, a regression algorithm has been developed that allows for the advisable simultaneous regression of all the condensed phase equilibrium regions that are present in ternary systems at constant T and P. It includes specific strategies designed to avoid some of the pitfalls frequently found in commercial regression tools for phase equilibrium calculations. Most of the proposed strategies are based on the geometrical interpretation of the lowest common tangent plane equilibrium criterion, which allows an unambiguous comprehension of the behavior of the mixtures. The paper aims to show all the work as a whole in order to reveal the necessary efforts that must be devoted to overcome the difficulties that still exist in the phase equilibrium data regression problem.
Resumo:
In this paper we present a method to automatically identify linguistic contexts which contain possible causes of emotions or emotional states from Italian newspaper articles (La Repubblica Corpus). Our methodology is based on the interplay between relevant linguistic patterns and an incremental repository of common sense knowledge on emotional states and emotion eliciting situations. Our approach has been evaluated with respect to manually annotated data. The results obtained so far are satisfying and support the validity of the methodology proposed.
Resumo:
In autumn 2012, the new release 05 (RL05) of monthly geopotencial spherical harmonics Stokes coefficients (SC) from GRACE (Gravity Recovery and Climate Experiment) mission was published. This release reduces the noise in high degree and order SC, but they still need to be filtered. One of the most common filtering processing is the combination of decorrelation and Gaussian filters. Both of them are parameters dependent and must be tuned by the users. Previous studies have analyzed the parameters choice for the RL05 GRACE data for oceanic applications, and for RL04 data for global application. This study updates the latter for RL05 data extending the statistics analysis. The choice of the parameters of the decorrelation filter has been optimized to: (1) balance the noise reduction and the geophysical signal attenuation produced by the filtering process; (2) minimize the differences between GRACE and model-based data; (3) maximize the ratio of variability between continents and oceans. The Gaussian filter has been optimized following the latter criteria. Besides, an anisotropic filter, the fan filter, has been analyzed as an alternative to the Gauss filter, producing better statistics.
Resumo:
The Bajo Segura Basin (eastern Betic Cordillera) is a Mediterranean marginal basin where the Messinian Erosional Surface (MES), formed during the Messinian Salinity Crisis sea-level fall, is well developed. Overlying this major discontinuity the lower Pliocene transgressive sediments record the reflooding of the Mediterranean and the return to an open marine environment, the continental shelf being rebuilt after the Messinian erosion. The stratigraphic and biostratigraphic study of six sections allows two transgressive-regressive sequences filling the MES to be distinguished, correlated with the previously distinguished Mediterranean offshore seismic units. Ten calcareous nannofossil bioevents have been identified. The lower sequence can be dated according to nannofossil biozones NN12 to NN14 and the upper sequence by NN15 to NN16. The boundary between both lower Pliocene sedimentary sequences occur after the first common occurrence (FCO) of Discoaster asymmetricus found in the uppermost sediments of the lower sequence and before the first occurrence (FO) of Discoaster tamalis in the lowermost part of the upper sequence. Thus this sequence boundary can be estimated at between 4.1 and 4.0Ma ago.
Resumo:
Camera traps have become a widely used technique for conducting biological inventories, generating a large number of database records of great interest. The main aim of this paper is to describe a new free and open source software (FOSS), developed to facilitate the management of camera-trapped data which originated from a protected Mediterranean area (SE Spain). In the last decade, some other useful alternatives have been proposed, but ours focuses especially on a collaborative undertaking and on the importance of spatial information underpinning common camera trap studies. This FOSS application, namely, “Camera Trap Manager” (CTM), has been designed to expedite the processing of pictures on the .NET platform. CTM has a very intuitive user interface, automatic extraction of some image metadata (date, time, moon phase, location, temperature, atmospheric pressure, among others), analytical (Geographical Information Systems, statistics, charts, among others), and reporting capabilities (ESRI Shapefiles, Microsoft Excel Spreadsheets, PDF reports, among others). Using this application, we have achieved a very simple management, fast analysis, and a significant reduction of costs. While we were able to classify an average of 55 pictures per hour manually, CTM has made it possible to process over 1000 photographs per hour, consequently retrieving a greater amount of data.
Resumo:
In the current Information Age, data production and processing demands are ever increasing. This has motivated the appearance of large-scale distributed information. This phenomenon also applies to Pattern Recognition so that classic and common algorithms, such as the k-Nearest Neighbour, are unable to be used. To improve the efficiency of this classifier, Prototype Selection (PS) strategies can be used. Nevertheless, current PS algorithms were not designed to deal with distributed data, and their performance is therefore unknown under these conditions. This work is devoted to carrying out an experimental study on a simulated framework in which PS strategies can be compared under classical conditions as well as those expected in distributed scenarios. Our results report a general behaviour that is degraded as conditions approach to more realistic scenarios. However, our experiments also show that some methods are able to achieve a fairly similar performance to that of the non-distributed scenario. Thus, although there is a clear need for developing specific PS methodologies and algorithms for tackling these situations, those that reported a higher robustness against such conditions may be good candidates from which to start.
Resumo:
Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.