3 resultados para Transportation Supply-Demand Modeling.

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tourist accommodation expenditure is a widely investigated topic as it represents a major contribution to the total tourist expenditure. The identification of the determinant factors is commonly based on supply-driven applications while little research has been made on important travel characteristics. This paper proposes a demand-driven analysis of tourist accommodation price by focusing on data generated from room bookings. The investigation focuses on modeling the relationship between key travel characteristics and the price paid to book the accommodation. To accommodate the distributional characteristics of the expenditure variable, the analysis is based on the estimation of a quantile regression model. The findings support the econometric approach used and enable the elaboration of relevant managerial implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research studies the self-heating produced by the application of an electric current to conductive cement pastes with carbonaceous materials. The main parameters studied were: type and percentage of carbonaceous materials, effect of moisture, electrical resistance, power consumption, maximum temperature reached and its evolution and ice melting kinetics are the main parameters studied. A mathematical model is also proposed, which predicts that the degree of heating is adjustable with the applied voltage. Finally, the results have been applied to ensure that cementitious materials studied are feasible to control ice layers in transportation infrastructures.