3 resultados para Transequatorial temperature distribution

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Central compact objects (CCOs) are X-ray sources lying close to the centre of supernova remnants, with inferred values of the surface magnetic fields significantly lower (≲1011 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and re-emergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 10−4–10−3 M⊙ over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field re-emerges on a typical time-scale of 1–100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as an alternative to the antimagnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. None the less, the modelling allows us to place constraints on the system geometry (i.e. the angles ψ and ξ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to 65° ≲ ψ + ξ ≲ 125° or 235° ≲ ψ + ξ ≲ 295°; (b) the temperature contrast between the poles and the equator must be at least a factor of ∼6, and (c) the size of the hottest region ranges between 0.2 and 0.7 km (including uncertainties on the source distance). Lastly, we interpret our findings within the context of internal and external heating models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced porous materials with tailored porosity (extremely high development of microporosity together with a narrow micropore size distribution (MPSD)) are required in energy and environmental related applications. Lignocellulosic biomass derived HTC carbons are good precursors for the synthesis of activated carbons (ACs) via KOH chemical activation. However, more research is needed in order to tailor the microporosity for those specific applications. In the present work, the influence of the precursor and HTC temperature on the porous properties of the resulting ACs is analyzed, remarking that, regardless of the precursor, highly microporous ACs could be generated. The HTC temperature was found to be an extremely influential parameter affecting the porosity development and the MPSD of the ACs. Tuning of the MPSD of the ACs was achieved by modification of the HTC temperature. Promising preliminary results in gas storage (i.e. CO2 capture and high pressure CH4 storage) were obtained with these materials, showing the effectiveness of this synthesis strategy in converting a low value lignocellulosic biomass into a functional carbon material with high performance in gas storage applications.