3 resultados para Timing

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. Aims. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. Methods. We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study. Results. We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n ~ 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs. Conclusions. Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (≳ 1014 G) multipolar or toroidal components, even with a weak (~1012 G) dipolar field are consistent with the observed trend of the timing properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In X-ray binaries, rapid variability in X-ray flux of greater than an order of magnitude on time-scales of a day or less appears to be a signature of wind accretion from a supergiant companion. When the variability takes the form of rare, brief, bright outbursts with only faint emission between them, the systems are called supergiant fast X-ray transients (SFXTs). We present data from twice-weekly scans of the Galactic bulge by the Rossi X-ray Timing Explorer that allow us to compare the behaviour of known SFXTs and possible SFXT candidates with the persistently bright supergiant X-ray binary 4U 1700−377. We independently confirm the orbital periods reported by other groups for SFXTs SAX J1818.6−1703 and IGR J17544−2619. The new data do not independently reproduce the orbital period reported for XTE J1739−302, but slightly improve the significance of the original result when the data are combined. The bulge source XTE J1743−363 shows a combination of fast variability and a long-term decline in activity, the latter behaviour not being characteristic of supergiant X-ray binaries. A far-red spectrum of the companion suggests that it is a symbiotic neutron star binary rather than a high-mass binary, and the reddest known of this class: the spectral type is approximately M8 III.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a long-term phase-coherent timing analysis and pulse-phase resolved spectroscopy for the two outbursts observed from the transient anomalous X-ray pulsar CXOU J164710.2−455216. For the first outburst we used 11 Chandra and XMM–Newton observations between 2006 September and 2009 August, the longest baseline yet for this source. We obtain a coherent timing solution with P = 10.61065583(4) s, Ṗ = 9.72(1) × 10−13 s s−1 and P̈ = –1.05(5) × 10−20 s s−2. Under the standard assumptions this implies a surface dipolar magnetic field of ∼1014 G, confirming this source as a standard B magnetar. We also study the evolution of the pulse profile (shape, intensity and pulsed fraction) as a function of time and energy. Using the phase-coherent timing solution we perform a phase-resolved spectroscopy analysis, following the spectral evolution of pulse-phase features, which hints at the physical processes taking place on the star. The results are discussed from the perspective of magnetothermal evolution models and the untwisting magnetosphere model. Finally, we present similar analysis for the second, less intense, 2011 outburst. For the timing analysis we used Swift data together with 2 XMM–Newton and Chandra pointings. The results inferred for both outbursts are compared and briefly discussed in a more general framework.