10 resultados para Time-variable gravity

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-variable gravity data from the Gravity Recovery And Climate Experiment (GRACE) mission are used to study total water content over Australia for the period 2002–2010. A time-varying annual signal explains 61% of the variance of the data, in good agreement with two independent estimates of the same quantity from hydrological models. Water mass content variations across Australia are linked to Pacific and Indian Ocean variability, associated with El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), respectively. From 1989, positive (negative) IOD phases were related to anomalously low (high) precipitation in southeastern Australia, associated with a reduced (enhanced) tropical moisture flux. In particular, the sustained water mass content reduction over central and southern regions of Australia during the period 2006–2008 is associated with three consecutive positive IOD events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The total sea level variation (SLV) is the combination of steric and mass␣induced SLV, whose exact shares are key to understanding the oceanic response to climate system changes. Total SLV can be observed by radar altimetry satellites such as TOPEX/POSEIDON and Jason 1/2. The steric SLV can be computed through temperature and salinity profiles from in situ measurements or from ocean general circulation models (OGCM), which can assimilate the said observations. The mass-induced SLV can be estimated from its time-variable gravity (TVG) signals. We revisit this problem in the Mediterranean Sea estimating the observed, steric, and mass-induced SLV, for the latter we analyze the latest TVG data set from the GRACE (Gravity Recovery and Climate Experiment) satellite mission launched in 2002, which is 3.5 times longer than in previous studies, with the application of a two-stage anisotropic filter to reduce the noise in high-degree and -order spherical harmonic coefficients. We confirm that the intra-annual total SLV are only produced by water mass changes, a fact explained in the literature as a result of the wind field around the Gibraltar Strait. The steric SLV estimated from the residual of “altimetry minus GRACE” agrees in phase with that estimated from OGCMs and in situ measurements, although showing a higher amplitude. The net water fluxes through both the straits of Gibraltar and Sicily have also been estimated accordingly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sea level variation (SLVtotal) is the sum of two major contributions: steric and mass-induced. The steric SLVsteric is that resulting from the thermal and salinity changes in a given water column. It only involves volume change, hence has no gravitational effect. The mass-induced SLVmass, on the other hand, arises from adding or subtracting water mass to or from the water column and has direct gravitational signature. We examine the closure of the seasonal SLV budget and estimate the relative importance of the two contributions in the Mediterranean Sea as a function of time. We use ocean altimetry data (from TOPEX/Poseidon, Jason 1, ERS, and ENVISAT missions) to estimate SLVtotal, temperature, and salinity data (from the Estimating the Circulation and Climate of the Ocean ocean model) to estimate SLVsteric, and time variable gravity data (from Gravity Recovery and Climate Experiment (GRACE) Project, April 2002 to July 2004) to estimate SLVmass. We find that the annual cycle of SLVtotal in the Mediterranean is mainly driven by SLVsteric but moderately offset by SLVmass. The agreement between the seasonal SLVmass estimations from SLVtotal – SLVsteric and from GRACE is quite remarkable; the annual cycle reaches the maximum value in mid-February, almost half a cycle later than SLVtotal or SLVsteric, which peak by mid-October and mid-September, respectively. Thus, when sea level is rising (falling), the Mediterranean Sea is actually losing (gaining) mass. Furthermore, as SLVmass is balanced by vertical (precipitation minus evaporation, P–E) and horizontal (exchange of water with the Atlantic, Black Sea, and river runoff) mass fluxes, we compared it with the P–E determined from meteorological data to estimate the annual cycle of the horizontal flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reply to comment by L. Fenoglio-Marc et al. on “On the steric and mass-induced contributions to the annual sea level variations in the Mediterranean Sea”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/ Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In autumn 2012, the new release 05 (RL05) of monthly geopotencial spherical harmonics Stokes coefficients (SC) from GRACE (Gravity Recovery and Climate Experiment) mission was published. This release reduces the noise in high degree and order SC, but they still need to be filtered. One of the most common filtering processing is the combination of decorrelation and Gaussian filters. Both of them are parameters dependent and must be tuned by the users. Previous studies have analyzed the parameters choice for the RL05 GRACE data for oceanic applications, and for RL04 data for global application. This study updates the latter for RL05 data extending the statistics analysis. The choice of the parameters of the decorrelation filter has been optimized to: (1) balance the noise reduction and the geophysical signal attenuation produced by the filtering process; (2) minimize the differences between GRACE and model-based data; (3) maximize the ratio of variability between continents and oceans. The Gaussian filter has been optimized following the latter criteria. Besides, an anisotropic filter, the fan filter, has been analyzed as an alternative to the Gauss filter, producing better statistics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Free Core Nutation (FCN) is a free mode of the Earth's rotation caused by the different material characteristics of the Earth's core and mantle. This causes the rotational axes of those layers to slightly diverge from each other, resulting in a wobble of the Earth's rotation axis comparable to nutations. In this paper we focus on estimating empirical FCN models using the observed nutations derived from the VLBI sessions between 1993 and 2013. Assuming a fixed value for the oscillation period, the time-variable amplitudes and phases are estimated by means of multiple sliding window analyses. The effects of using different a priori Earth Rotation Parameters (ERP) in the derivation of models are also addressed. The optimal choice of the fundamental parameters of the model, namely the window width and step-size of its shift, is searched by performing a thorough experimental analysis using real data. The former analyses lead to the derivation of a model with a temporal resolution higher than the one used in the models currently available, with a sliding window reduced to 400 days and a day-by-day shift. It is shown that this new model increases the accuracy of the modeling of the observed Earth's rotation. Besides, empirical models determined from USNO Finals as a priori ERP present a slightly lower Weighted Root Mean Square (WRMS) of residuals than IERS 08 C04 along the whole period of VLBI observations, according to our computations. The model is also validated through comparisons with other recognized models. The level of agreement among them is satisfactory. Let us remark that our estimates give rise to the lowest residuals and seem to reproduce the FCN signal in more detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature states that project duration is affected by various scope factors. Using 168 building projects carried out in Spain, this paper uses the multiple regression analysis to develop a forecast model that allows estimating project duration of new builds. The proposed model uses project type, gross floor area (GFA), the cost/GFA relationship and number of floors as predictor variables. The research identified the logarithmic form of construction speed as the most appropriate response variable. GFA has greater influence than cost on project duration but both factors are necessary to achieve a forecast model with the highest accuracy. We developed an analysis to verify the stability of forecasted values and showed how a model with high values of fit and accuracy may display an anomalous behavior in the forecasted values. The sensitivity of the proposed forecast model was also analyzed versus the variability of construction costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3−1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ∼500 d since the discovery of SWIFT J1822.3−1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (∼3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.