4 resultados para Thinning
em Universidad de Alicante
Resumo:
Purpose. Postnatal exposure to hyperoxia destroys the plexiform layers of the neonatal rat retina, resulting in significant electroretinographic anomalies. The purpose of this study was to identify the mechanisms at the origin of this loss. Methods. Sprague-Dawley (SD) and Long Evans (LE) rats were exposed to hyperoxia from birth to postnatal day (P) 6 or P14 and from P6 to P14, after which rats were euthanatized at P6, P14, or P60. Results. At P60, synaptophysin staining confirmed the lack of functional synaptic terminals in SD (outer plexiform layer [OPL]) and LE (OPL and inner plexiform layer [IPL]) rats. Uneven staining of ON-bipolar cell terminals with mGluR6 suggests that their loss could play a role in OPL thinning. Protein kinase C(PKC)-α and recoverin (rod and cone ON-bipolar cells, respectively) showed a lack of dendritic terminals in the OPL with disorganized axonal projections in the IPL. Although photoreceptor nuclei appeared intact, a decrease in bassoon staining (synaptic ribbon terminals) suggests limited communication to the inner retina. Findings were significantly more pronounced in LE rats. An increase in TUNEL-positive cells was observed in LE (inner nuclear layer [INL] and outer nuclear layer [ONL]) and SD (INL) rats after P0 to P14 exposure (425.3%, 102.2%, and 146.3% greater than control, respectively [P < 0.05]). Conclusions. Results suggest that cell death and synaptic retraction are at the root of OPL thinning. Increased TUNEL-positive cells in the INL confirm that cells die, at least in part, because of apoptosis. These findings propose a previously undescribed mechanism of cell death and synaptic retraction that are likely at the origin of the functional consequences of hyperoxia.
Resumo:
Visual symptoms are relatively common in Parkinson's disease (PD) and optical coherence tomography has indicated possible retinal thinning. Accumulation of aggregated α-synuclein is thought to be a central pathogenic event in the PD brain but there have not as yet been reports of retinal synucleinopathy. Retinal wholemounts were prepared from subjects with a primary clinicopathological diagnosis of PD (N = 9), dementia with Lewy bodies (DLB; N = 3), Alzheimer's disease (N = 3), progressive supranuclear palsy (N = 2) as well as elderly normal control subjects (N = 4). These were immunohistochemically stained with an antibody against α-synuclein phosphorylated at serine 129, which is a specific molecular marker of synucleinopathy. Phosphorylated α-synuclein-immunoreactive (p-syn IR) nerve fibers were present in 7/9 PD subjects and in 1/3 DLB subjects; these were sparsely distributed and superficially located near or at the inner retinal surface. The fibers were either long and straight or branching, often with multiple en-passant varicosities along their length. The straight fibers most often had an orientation that was radial with respect to the optic disk. Together, these features are suggestive of either retinopetal/centrifugal fibers or of ganglion cell axons. In one PD subject there were sparse p-syn IR neuronal cell bodies with dendritic morphology suggestive of G19 retinal ganglion cells or intrinsically photosensitive ganglion cells. There were no stained nerve fibers or other specific staining in any of the non-PD or non-DLB subjects. It is possible that at least some of the observed visual function impairments in PD subjects might be due to α-synucleinopathy.
Resumo:
Optic neuritis is an inflammation of the optic nerve and may be related to different systemic conditions. The clinical presentation of this pathology usually includes sudden loss of visual acuity (VA) which may be unilateral or bilateral, visual field restriction, pain with eye movements, dyschromatopsia, a relative afferent pupillary defect and optic disk swelling. Optic neuritis in children has specific clinical features and a better prognosis than in adulthood. Although usually appears an underlying viral disease, the main concern for practitioners is the relationship of optic neuritis with multiple sclerosis. In addition to the classical techniques as magnetic resonance imaging (MRI), current tendencies of diagnosis for eye practitioners include new imaging devices as optical coherence tomography (OCT), useful to show a thinning of the retinal fibers layer (RFL) after the inflammatory episode. Regarding the management of these patients, short-term intravenous steroid dosages seem to be the best option to treat acute attacks characterized by a very poor bilateral VA.
Resumo:
This case report reports the visual rehabilitation obtained with the fitting of a new design of full scleral contact lens (ICD 16.5 contact lens, Paragon Vision Sciences, distributed by Lenticon, Madrid, Spain) in a cornea with advanced keratoconus and previous implantation of intracorneal ring segment with a very limited effect. This eye had a refraction of –3.00 × 55° cylinder, providing a visual acuity of 0.5 LogMAR. The topographic pattern was very irregular with the presence of a significant central protrusion and a significant central corneal thinning. Some previous unsuccessful fittings have been performed with corneal and corneal-scleral lenses. A comfortable wearing was achieved with a fully scleral contact lens of 4600 μm of sagittal height, optical power of –11.25 D, and providing an apical clearance of 196 μm. A visual acuity of 0.0 LogMAR combined with a relevant aberrometric improvement was achieved with this contact lens. The patient was completely satisfied with the fitting. The result was maintained during 1 year after the fitting. Full scleral lenses are then able to provide comfortable wear and a significant increase in visual acuity combined with a significant improvement in the visual quality in eyes with advanced keratoconus.