4 resultados para Thin Gold Layers
em Universidad de Alicante
Resumo:
This work focuses on a Messinian shallow-marine terrigenous unit, termed the La Virgen Formation, which forms part of the sedimentary infill of the Bajo Segura Basin (Betic margin of the western Mediterranean). This formation was deposited during a high sea level phase prior to the onset of the Messinian Salinity Crisis. Stratigraphically, it comprises a prograding stack of sandstone lithosomes alternating with marly intervals (1st-order cyclicity). These lithosomes are characterized by a homoclinal geometry that tapers distally, and interfinger with pelagic sediments rich in planktonic and benthic microfauna (Torremendo Formation). An analysis of sedimentary facies of each lithosome reveals a repetitive succession of sandy storm beds (tempestites), occasionally amalgamated, which are separated by thin marly layers (2nd-order cyclicity). Each storm bed contains internal erosional surfaces (3rd-order cyclicity) that delimit sets of laminae. Two categories of storm beds have been differentiated. The first one includes layers formed below storm wave base (SWB), characterized by traction structures associated to unidirectional flows (scoured base, planar lamination, and parting lineation). The second category consists of layers deposited above the SWB which display typical high regime oscillatory flow structures (swaley and hummocky cross lamination). In both cases, the ichnological record is characterized by an oligotypic association of Ophiomorpha nodosa, which can be interpreted as the result of allochthonous tracemakers (crustaceans) transported during storm events together with the sediment. The benthic microfauna in the marly intervals that separate the sandstone lithosomes (1st-order cyclicity) indicates that the storm ebb surges were deposited at depths ranging from those of inner shelf settings (with Elphidium spp. and Cibicides lobatulus) to those of outer shelf (with Valvulineria complanata and Uvigerina cylindrica). At the distal end of the sandstone lithosomes, the planktonic microfauna is characterized by a high content of taxa indicative of warm-oligotrophic waters (Globigerinoides obliquus and Globigerinoides bulloideus). In contrast, in the marly intervals, the microfauna is dominated by species typical of cold-eutrophic waters (Globigerina and Neogloboquadrina). This alternation of planktic foraminiferal assemblages is interpreted as being the expression of climatic cycles, in which every episode of progradation of tempestite-dominated lithosomes corresponds to maximum insolation and warm waters, whereas episodes of marly deposition correspond to minimal insolation and cold waters. The 1st-order cyclicity recorded in the La Virgen Formation, in a context of terrigenous storm-dominated shelf, corresponds to sapropel/homogeneous marl cycles formed in a pelagic basin (Torremendo Fm). These cycles in pelagic sediments are commonplace throughout the Mediterranean during the Messinian and reflect precession orbital changes: repeated periods of maximum insolation – minimum precession (sapropels) and minimal insolation – maximum precession (homogeneous marls). The fact that the example of terrigenous unit studied herein is coetaneous with the well-developed reef complexes in the Mediterranean basins points out the importance of sediment supply in the formation of large-scale sandy lithosomes. This is a crucial aspect to understanding reservoir genesis as well as lateral stratigraphic relationships with potential seal and/or source rocks.
Resumo:
Ultrathin and transparent nanostructured Ni(OH)2 films were deposited on conducting glass (F:SnO2) by a urea-based chemical bath deposition method. By controlling the deposition time, the amount of deposited Ni(OH)2 was varied over 7 orders of magnitude. The turnover number for O2 generation, defined as the number of O2 molecules generated per catalytic site (Ni atom) and per second, increases drastically as the electrocatalyst amount decreases. The electrocatalytic activity of the studied samples (measured as the current density at a certain potential) increases with the amount of deposited Ni(OH)2 until a saturation value is already obtained for a thin film of around 1 nm in thickness, composed of Ni(OH)2 nanoplatelets lying flat on the conductive support. The deposition of additional amounts of catalyst generates a porous honeycomb structure that does not improve (only maintains) the electrocatalytic activity. The optimized ultrathin electrodes show a remarkable stability, which indicates that the preparation of highly transparent electrodes, efficient for oxygen evolution, with a minimum amount of nickel is possible.
Resumo:
Significant effort is being devoted to the study of photoactive electrode materials for artificial photosynthesis devices. In this context, photocathodes promoting water reduction, based on earth-abundant elements and possessing stability under illumination, should be developed. Here, the photoelectrochemical behavior of CuCrO2 sol–gel thin film electrodes prepared on conducting glass is presented. The material, whose direct band gap is 3.15 eV, apparently presents a remarkable stability in both alkaline and acidic media. In 0.1 M HClO4 the material is significantly photoactive, with IPCE values at 350 nm and 0.36 V vs. RHE of over 6% for proton reduction and 23% for oxygen reduction. This response was obtained in the absence of charge extraction layers or co-catalysts, suggesting substantial room for optimization. The photocurrent onset potential is equal to 1.06 V vs. RHE in both alkaline and acidic media, which guarantees the combination of the material with different photoanodes such as Fe2O3 or WO3, potentially yielding bias-free water splitting devices.
Resumo:
Currently, one of the most attractive and desirable ways to solve the energy challenge is harvesting energy directly from the sunlight through the so-called artificial photosynthesis. Among the ternary oxides based on earth–abundant metals, bismuth vanadate has recently emerged as a promising photoanode. Herein, BiVO4 thin film photoanodes have been successfully synthesized by a modified metal-organic precursor decomposition method, followed by an annealing treatment. In an attempt to improve the photocatalytic properties of this semiconductor material for photoelectrochemical water oxidation, the electrodes have been modified (i) by doping with La and Ce (by modifying the composition of the BiVO4 precursor solution with the desired concentration of the doping element), and (ii) by surface modification with Au nanoparticles potentiostatically electrodeposited. La and Ce doping at concentrations of 1 and 2 at% in the BiVO4 precursor solution, respectively, enhances significantly the photoelectrocatalytic performance of BiVO4 without introducing important changes in either the material structure or the electrode morphology, according to XRD and SEM characterization. In addition, surface modification of the electrodes with Au nanoparticles further enhances the photocurrent as such metallic nanoparticles act as co-catalysts, promoting charge transfer at the semiconductor/solution interface. The combination of these two complementary ways of modifying the electrodes has resulted in a significant increase in the photoresponse, facilitating their potential application in artificial photosynthesis devices.