9 resultados para Theory of Rational Choice

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Science has been developed from the rational-empirical methods, having as a consequence, the representation of existing phenomena without understanding the root causes. The question which currently has is the sense of the being, and in a simplified way, one can say that the dogmatic religion lead to misinterpretations, the empirical sciences contain the exact rational representations of phenomena. Thus, Science has been able to get rid of the dogmatic religion. The project for the sciences of being looks to return to reality its essential foundations; under the plan of theory of systems necessarily involves a search for the meaning of Reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A density-functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density-functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie temperature by additional confinement of the holes in a δ-doped layer of Mn by a quantum well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose cotunneling as the microscopic mechanism that makes possible inelastic electron tunneling spectroscopy of magnetic atoms in surfaces for a wide range of systems, including single magnetic adatoms, molecules, and molecular stacks. We describe electronic transport between the scanning tip and the conducting surface through the magnetic system (MS) with a generalized Anderson model, without making use of effective spin models. Transport and spin dynamics are described with an effective cotunneling Hamiltonian in which the correlations in the magnetic system are calculated exactly and the coupling to the electrodes is included up to second order in the tip MS and MS substrate. In the adequate limit our approach is equivalent to the phenomenological Kondo exchange model that successfully describes the experiments. We apply our method to study in detail inelastic transport in two systems, stacks of cobalt phthalocyanines and a single Mn atom on Cu2N. Our method accounts for both the large contribution of the inelastic spin exchange events to the conductance and the observed conductance asymmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the inelastic dI/dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for the spin selection rules and dI/dV spectra observed experimentally for single Fe and Mn atoms deposited on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor exchange interactions as well as single-ion anisotropy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If one has a distribution of words (SLUNs or CLUNS) in a text written in language L(MT), and is adjusted one of the mathematical expressions of distribution that exists in the mathematical literature, some parameter of the elected expression it can be considered as a measure of the diversity. But because the adjustment is not always perfect as usual measure; it is preferable to select an index that doesn't postulate a regularity of distribution expressible for a simple formula. The problem can be approachable statistically, without having special interest for the organization of the text. It can serve as index any monotonous function that has a minimum value when all their elements belong to the same class, that is to say, all the individuals belong to oneself symbol, and a maximum value when each element belongs to a different class, that is to say, each individual is of a different symbol. It should also gather certain conditions like they are: to be not very sensitive to the extension of the text and being invariant to certain number of operations of selection in the text. These operations can be theoretically random. The expressions that offer more advantages are those coming from the theory of the information of Shannon-Weaver. Based on them, the authors develop a theoretical study for indexes of diversity to be applied in texts built in modeling language L(MT), although anything impedes that they can be applied to texts written in natural languages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the effect of spin waves on the properties of finite-size spin chains with a chiral spin ground state observed on biatomic Fe chains deposited on iridium(001). The system is described with a Heisenberg model supplemented with a Dzyaloshinskii-Moriya coupling and a uniaxial single ion anisotropy that presents a chiral spin ground state. Spin waves are studied using the Holstein-Primakoff boson representation of spin operators. Both the renormalized ground state and the elementary excitations are found by means of Bogoliubov transformation, as a function of the two variables that can be controlled experimentally, the applied magnetic field and the chain length. Three main results are found. First, because of the noncollinear nature of the classical ground state, there is a significant zero-point reduction of the ground-state magnetization of the spin spiral. Second, there is a critical external field from which the ground state changes from chiral spin ground state to collinear ferromagnetic order. The character of the two lowest-energy spin waves changes from edge modes to confined bulk modes over this critical field. Third, in the spin-spiral state, the spin-wave spectrum exhibits oscillatory behavior as function of the chain length with the same period of the spin helix.