3 resultados para Thematic Text Analysis

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objetivo: Describir los cambios percibidos por la población y los profesionales en relación con la salud y el uso de servicios tras la intervención RIU con agentes comunitarios en un barrio vulnerable. Diseño: Estudio descriptivo cualitativo con entrevistas individuales y grupales y observación participante de octubre de 2008 a julio de 2009. Emplazamiento: Barrio Raval (Algemesí-Valencia). Participantes: Selección por muestreo opinático de 7 mujeres agentes de salud, todas las que finalizaron la intervención, y 10 profesionales implicados en la misma. Método: Con las mujeres se mantuvo una entrevista grupal a los 6 meses, y una entrevista grupal y 7 individuales a los 9 meses de intervención. Se realizó un análisis temático de tipo descriptivo desde el modelo de promoción de salud. Con los profesionales se utilizó observación participante en una reunión a los 9 meses, analizándose las notas de campo según: valoración del proyecto, cambios detectados, dificultades y recomendaciones. Resultados: Las mujeres adquirieron información sobre salud, anticoncepción, embarazo y servicios sanitarios; señalaron cambios en autocuidados y habilidades sociales y liderazgo; interiorizaron el rol de agente de salud difundiendo lo aprendido y manifestando mejor autoestima y reconocimiento social. Provocaron cambios en su entorno relativos al cuidado de la salud y el acceso a los servicios. Los profesionales no incorporaron a su trabajo la perspectiva comunitaria; valoraron el proyecto, coincidieron con las mujeres en la mejora del acceso y uso de servicios y en el acercamiento población-profesionales. Conclusiones: RIU aumenta las capacidades de las personas participantes, su reconocimiento social y mejora el acceso y uso de servicios sanitarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: We aimed to explore the meaning of obesity in elderly persons with knee osteoarthritis (KO) and to determine the factors that encourage or discourage weight loss. Background: Various studies have demonstrated that body mass index is related to KO and that weight loss improves symptoms and functional capacity. However, dietary habits are difficult to modify and most education programs are ineffective. Design: A phenomenological qualitative study was conducted. Intentional sampling was performed in ten older persons with KO who had lost weight and improved their health-related quality of life after participating in a health education program. A thematic content analysis was conducted following the stages proposed by Miles and Huberman. Findings: Participants understood obesity as a risk factor for health problems and stigma. They believed that the cause of obesity was multifactorial and criticized health professionals for labeling them as “obese” and for assigning a moral value to slimness and diet. The factors identified as contributing to the effectiveness of the program were a tolerant attitude among health professionals, group education that encouraged motivation, quantitative dietary recommendations, and a meaningful learning model based on social learning theories. Conclusion: Dietary self-management without prohibitions helped participants to make changes in the quantity and timing of some food intake and to lose weight without sacrificing some foods that were deeply rooted in their culture and preferences. Dietary education programs should focus on health-related quality of life and include scientific knowledge but should also consider affective factors and the problems perceived as priorities by patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the main challenges to be addressed in text summarization concerns the detection of redundant information. This paper presents a detailed analysis of three methods for achieving such goal. The proposed methods rely on different levels of language analysis: lexical, syntactic and semantic. Moreover, they are also analyzed for detecting relevance in texts. The results show that semantic-based methods are able to detect up to 90% of redundancy, compared to only the 19% of lexical-based ones. This is also reflected in the quality of the generated summaries, obtaining better summaries when employing syntactic- or semantic-based approaches to remove redundancy.