5 resultados para The car rental salesman problem
em Universidad de Alicante
Resumo:
This article describes the Robot Vision challenge, a competition that evaluates solutions for the visual place classification problem. Since its origin, this challenge has been proposed as a common benchmark where worldwide proposals are measured using a common overall score. Each new edition of the competition introduced novelties, both for the type of input data and subobjectives of the challenge. All the techniques used by the participants have been gathered up and published to make it accessible for future developments. The legacy of the Robot Vision challenge includes data sets, benchmarking techniques, and a wide experience in the place classification research that is reflected in this article.
Resumo:
It has been reported that for certain colour samples, the chromatic adaptation transform CAT02 imbedded in the CIECAM02 colour appearance model predicts corresponding colours with negative tristimulus values (TSVs), which can cause problems in certain applications. To overcome this problem, a mathematical approach is proposed for modifying CAT02. This approach combines a non-negativity constraint for the TSVs of corresponding colours with the minimization of the colour differences between those values for the corresponding colours obtained by visual observations and the TSVs of the corresponding colours predicted by the model, which is a constrained non-linear optimization problem. By solving the non-linear optimization problem, a new matrix is found. The performance of the CAT02 transform with various matrices including the original CAT02 matrix, and the new matrix are tested using visual datasets and the optimum colours. Test results show that the CAT02 with the new matrix predicted corresponding colours without negative TSVs for all optimum colours and the colour matching functions of the two CIE standard observers under the test illuminants considered. However, the accuracy with the new matrix for predicting the visual data is approximately 1 CIELAB colour difference unit worse compared with the original CAT02. This indicates that accuracy has to be sacrificed to achieve the non-negativity constraint for the TSVs of the corresponding colours.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
The development of synthetic routes for the tailoring of efficient silica-based heterogeneous catalysts functionalized with coordination complexes or metallic nanoparticles has become a important goal in chemistry. Most of these techniques have been based on postsynthetic treatments of preformed silicas. Nevertheless, there is an emerging approach, so-called sol–gel coordination chemistry, based on co-condensation during the sol–gel preparation of the hybrid material of the corresponding complex or nanoparticle modified with terminal trialkoxysilane groups with a silica source (such as tetraethoxysilane) and in the presence of an adequate surfactant. This method leads to the production of new mesoporous metal complex-silica materials, with the metallic functionality incorporated homogeneously into the structure of the hybrid material, improving the stability of the coordination complex (which is protected by the silica network) and reducing the leaching of the active phase. This technique also offers the actual possibility of functionalizing silica or other metal oxides for a wider range of applications, such as photonics, sensing, and biochemical functions.
Resumo:
Dealing with the environmental problems is one of the biggest challenges within the field of architectural technology. Solutions to this problem are mostly exclusively sought in materials and computer technology. However, far more attention should be paid to humans and their role in this problem. This paper presents a small part of our bachelor thesis, which started as an investigation on the Dutch terraced house and through research ended as a study on the human behaviour and motivation. The first part of this paper, the evolution, is focussed on the traditional way of problem solving. The second part, the revolution, is focussed on human behaviour and motivation. These two studies put together lead to our conclusion: The only way to structurally solve our environmental problem is to revolutionize our way of building by involving the human interaction into our solution instead of forcing it out.