3 resultados para The Xiangshan U deposit

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrated stratigraphic analysis has been made of the Tarcău Nappe (Moldavidian Domain, Eastern Romanian Carpathians), coupled with a geochemical study of organic-rich beds. Two Main Sequence Boundaries (Early Oligocene and near to the Oligocene–Aquitanian boundary, respectively) divide the sedimentary record into three depositional sequences. The sedimentation occurred in the central area of a basin supplied by different and opposite sources. The high amount of siliciclastics at the beginning of the Miocene marks the activation of the “foredeep stage”. The successions studied are younger than previously thought and they more accurately date the deformation of the different Miocene phases affecting the Moldavidian Basin. The intervals with black shales identified are related to two main separate anoxic episodes with an age not older than Late Rupelian and not before Late Chattian. The most important organic-rich beds correspond to the Lower Menilites, Bituminous Marls and Lower Dysodilic Shales Members (Interval 2). These constitute a good potential source rock for petroleum, with homogeneous Type II oil-prone organic matter, highly lipidic and thermally immature. The deposition of black shales has been interpreted as occurring within a deep, periodically isolated and tectonically controlled basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sedimentary record of the Tarcău and Vrancea Nappes, belonging to the flysch accretionary zone of the Eastern Carpathians (Eastern Carpathian Outer Flysch), registered Cretaceous-Miocene events during the evolution of the Moldavidian Basin. Our biostratigraphic data indicate that the deposits studied are younger than previously reported. The comparison of sedimentary record studied with the Late Cretaceous-Early Miocene global eustatic curve indicates that eustatic factor played a secondary role, after the tectonic one. Four main stages of different processes influenced by tectonics are recognized in the sedimentary record: (1) Campanian-Maastrichtian-earliest Paleocene; (2) latest Ypresian-Lutetian; (3) late Chattian-earliest Aquitanian, and (4) late Aquitanian-early Burdigalian. The late Chattian- earliest Aquitanian and late Aquitanian-early Burdigalian records indicate a high tectonic influence. The first event was related to the foredeep stage of the sedimentary domain studied, and the second one to the deformation stage of the same domain. The sedimentary records of tectonic influence recognized during these stages are useful tools for geodynamic reconstructions. The stratigraphic correlation of Tarcău and Vrancea sedimentary records are used

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca2+, neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α1 pore-forming subunit, which is associated with an extracellular α2δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α2δ3 subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼305 bp corresponding to the predicted size of the α2δ3 subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α2δ3 subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α2δ3 immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α2δ3 calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.