5 resultados para Textile fibers
em Universidad de Alicante
Resumo:
In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.). In this study, the strain and damage sensing possible application of carbon fiber reinforced alkali activated slag pastes has been evaluated. Cement pastes with 0, 0.29 and 0.58 vol % carbon fiber addition were prepared. Both carbon fiber dosages showed sensing properties. For strain sensing, function gage factors of up to 661 were calculated for compressive cycles. Furthermore, all composites with carbon fibers suffered a sudden increase in their resistivity when internal damages began, prior to any external signal of damage. Hence, this material may be suitable as strain or damage sensor.
Resumo:
In the chemical textile domain experts have to analyse chemical components and substances that might be harmful for their usage in clothing and textiles. Part of this analysis is performed searching opinions and reports people have expressed concerning these products in the Social Web. However, this type of information on the Internet is not as frequent for this domain as for others, so its detection and classification is difficult and time-consuming. Consequently, problems associated to the use of chemical substances in textiles may not be detected early enough, and could lead to health problems, such as allergies or burns. In this paper, we propose a framework able to detect, retrieve, and classify subjective sentences related to the chemical textile domain, that could be integrated into a wider health surveillance system. We also describe the creation of several datasets with opinions from this domain, the experiments performed using machine learning techniques and different lexical resources such as WordNet, and the evaluation focusing on the sentiment classification, and complaint detection (i.e., negativity). Despite the challenges involved in this domain, our approach obtains promising results with an F-score of 65% for polarity classification and 82% for complaint detection.
Resumo:
The main goal of this paper is to present the initial version of a Textile Chemical Ontology, to be used by textile professionals with the purpose of conceptualising and representing the banned and harmful chemical substances that are forbidden in this domain. After analysing different methodologies and determining that “Methontology” is the most appropriate for the purposes, this methodology is explored and applied to the domain. In this manner, an initial set of concepts are defined, together with their hierarchy and the relationships between them. This paper shows the benefits of using the ontology through a real use case in the context of Information Retrieval. The potentiality of the proposed ontology in this preliminary evaluation encourages extending the ontology with a higher number of concepts and relationships, and validating it within other Natural Language Processing applications.
Resumo:
Different catalysts, based on heteropolyacids supported on activated carbon fibers, have been prepared for palmitic acid esterification reaction. The influence of the catalyst (heteropolyacid) and the support on the catalytic activity have been analyzed. The results prove that an adequate combination of both is required to achieve the most suitable catalysts. Regarding to the heteropolyacid, phosphomolybdic acid seems to be the most suitable appropriate taking into account its lowest leaching. About the support, it must show an optimum microporosity, which must be wide enough to allow the entrance and exit of the reagents and products but not too wide in order to avoid the leaching of the catalyst. In addition, both decreasing of the catalytic activity and its recovery over several cycles have been analyzed.
Resumo:
This work reports on the synthesis of nanosheets of layered titanosilicate JDF-L1 supported on commercial E-type glass fibers with the aim of developing novel nanoarchitectures useful as robust and easy to handle hydrogen adsorbents. The preparation of those materials is carried out by hydrothermal reaction from the corresponding gel precursor in the presence of the glass support. Because of the basic character of the synthesis media, silica from the silicate-based glass fibers can be involved in the reaction, cementing its associated titanosilicate and giving rise to strong linkages on the support with the result of very stable heterostructures. The nanoarchitectures built up by this approach promote the growth and disposition of the titanosilicate nanosheets as a house-of-cards radially distributed around the fiber axis. Such an open arrangement represents suitable geometry for potential uses in adsorption and catalytic applications where the active surface has to be available. The content of the titanosilicate crystalline phase in the system represents about 12 wt %, and this percentage of the adsorbent fraction can achieve, at 298 K and 20 MPa, 0.14 wt % hydrogen adsorption with respect to the total mass of the system. Following postsynthesis treatments, small amounts of Pd (<0.1 wt %) have been incorporated into the resulting nanoarchitectures in order to improve their hydrogen adsorption capacity. In this way, Pd-layered titanosilicate supported on glass fibers has been tested as a hydrogen adsorbent at diverse pressures and temperatures, giving rise to values around 0.46 wt % at 298 K and 20 MPa. A mechanism of hydrogen spillover involving the titanosilicate framework and the Pd nanoparticules has been proposed to explain the high increase in the hydrogen uptake capacity after the incorporation of Pd into the nanoarchitecture.