3 resultados para Text editors (Computer programs)
em Universidad de Alicante
Resumo:
In this paper we address two issues. The first one analyzes whether the performance of a text summarization method depends on the topic of a document. The second one is concerned with how certain linguistic properties of a text may affect the performance of a number of automatic text summarization methods. For this we consider semantic analysis methods, such as textual entailment and anaphora resolution, and we study how they are related to proper noun, pronoun and noun ratios calculated over original documents that are grouped into related topics. Given the obtained results, we can conclude that although our first hypothesis is not supported, since it has been found no evident relationship between the topic of a document and the performance of the methods employed, adapting summarization systems to the linguistic properties of input documents benefits the process of summarization.
Resumo:
Automatic Text Summarization has been shown to be useful for Natural Language Processing tasks such as Question Answering or Text Classification and other related fields of computer science such as Information Retrieval. Since Geographical Information Retrieval can be considered as an extension of the Information Retrieval field, the generation of summaries could be integrated into these systems by acting as an intermediate stage, with the purpose of reducing the document length. In this manner, the access time for information searching will be improved, while at the same time relevant documents will be also retrieved. Therefore, in this paper we propose the generation of two types of summaries (generic and geographical) applying several compression rates in order to evaluate their effectiveness in the Geographical Information Retrieval task. The evaluation has been carried out using GeoCLEF as evaluation framework and following an Information Retrieval perspective without considering the geo-reranking phase commonly used in these systems. Although single-document summarization has not performed well in general, the slight improvements obtained for some types of the proposed summaries, particularly for those based on geographical information, made us believe that the integration of Text Summarization with Geographical Information Retrieval may be beneficial, and consequently, the experimental set-up developed in this research work serves as a basis for further investigations in this field.
Resumo:
One of the main challenges to be addressed in text summarization concerns the detection of redundant information. This paper presents a detailed analysis of three methods for achieving such goal. The proposed methods rely on different levels of language analysis: lexical, syntactic and semantic. Moreover, they are also analyzed for detecting relevance in texts. The results show that semantic-based methods are able to detect up to 90% of redundancy, compared to only the 19% of lexical-based ones. This is also reflected in the quality of the generated summaries, obtaining better summaries when employing syntactic- or semantic-based approaches to remove redundancy.