6 resultados para Teorema Egregium de Gauss

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Índice, resumen, conclusiones y bibliografía de la memoria del Máster en Optometría Clínica y Visión, Programa formativo en Biomedicina y Tecnologías para la vida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apuntes en formato html que incluyen los siguientes temas de la parte de simulación en la asignatura «simulación y optimización de procesos químicos» TEMA 1. Introducción 1.1 Introducción. 1.2 Desarrollo histórico de la simulación de procesos. Relación entre simulación optimización y síntesis de procesos. 1.3 Tipos de simuladores: Modular secuencial. Modular simultáneo. Basada en ecuaciones. TEMA 2. Simulación Modular Secuencial 2.1 Descomposición de diagramas de flujo (flowsheeting) 2.2 Métodos basados en las matrices booleanas Localización de redes cíclicas máximas. Algoritmo de Sargent y Westerberg. Algoritmo de Tarjan. 2.3 Selección de las corrientes de corte: 2.3.1 Caso general planteamiento como un "set-covering problem" (algoritmo de Pho y Lapidus) 2.3.2 Número mínimo de corrientes de corte (algoritmo de Barkley y Motard) 2.3.3 Conjunto de corrientes de corte no redundante (Algoritmo de Upadhye y Grens) TEMA 3. Simulación Modular Simultánea 3.1 Efecto de las estrategias tipo cuasi Newton sobre la convergencia de los diagramas de flujo. TEMA 4. Simulación Basada en Ecuaciones 4.1 Introducción. Métodos de factorización de matrices dispersas. Métodos a priori y métodos locales. 4.2 Métodos locales: Criterio de Markowitz. 4.3 Métodos a priori: 4.3.1 Triangularización por bloques: a. Base de salida admisible (transversal completo). b. Aplicación de los algoritmos de Sargent y Tarjan a matrices dispersas. c. Reordenación. 4.3.2 Transformación en matriz triangular bordeada. 4.4 Fase numerica. Algoritmo RANKI 4.5 Comparación entre los diferentes sistemas de simulación. Ventajas e Inconvenientes. TEMA 5. Grados de libertad y variables de diseño de un diagrama de flujo 5.1 Teorema de Duhem y regla de las fases 5.2 Grados de libertad de un equipo 5.3 Grados de libertad de un diagrama de flujo 5.4 Elección de las variables de diseño.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. To evaluate theoretically in normal eyes the influence on IOL power (PIOL) calculation of the use of a keratometric index (nk) and to analyze and validate preliminarily the use of an adjusted keratometric index (nkadj) in the IOL power calculation (PIOLadj). Methods. A model of variable keratometric index (nkadj) for corneal power calculation (Pc) was used for IOL power calculation (named PIOLadj). Theoretical differences ($PIOL) between the new proposed formula (PIOLadj) and which is obtained through Gaussian optics (PIOL Gauss) were determined using Gullstrand and Le Grand eye models. The proposed new formula for IOL power calculation (PIOLadj) was prevalidated clinically in 81 eyes of 81 candidates for corneal refractive surgery and compared with Haigis, HofferQ, Holladay, and SRK/T formulas. Results. A theoretical PIOL underestimation greater than 0.5 diopters was present in most of the cases when nk = 1.3375 was used. If nkadj was used for Pc calculation, a maximal calculated error in $PIOL of T0.5 diopters at corneal vertex in most cases was observed independently from the eye model, r1c, and the desired postoperative refraction. The use of nkadj in IOL power calculation (PIOLadj) could be valid with effective lens position optimization nondependent of the corneal power. Conclusions. The use of a single value of nk for Pc calculation can lead to significant errors in PIOL calculation that may explain some IOL power overestimations with conventional formulas. These inaccuracies can be minimized by using the new PIOLadj based on the algorithm of nkadj.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In autumn 2012, the new release 05 (RL05) of monthly geopotencial spherical harmonics Stokes coefficients (SC) from GRACE (Gravity Recovery and Climate Experiment) mission was published. This release reduces the noise in high degree and order SC, but they still need to be filtered. One of the most common filtering processing is the combination of decorrelation and Gaussian filters. Both of them are parameters dependent and must be tuned by the users. Previous studies have analyzed the parameters choice for the RL05 GRACE data for oceanic applications, and for RL04 data for global application. This study updates the latter for RL05 data extending the statistics analysis. The choice of the parameters of the decorrelation filter has been optimized to: (1) balance the noise reduction and the geophysical signal attenuation produced by the filtering process; (2) minimize the differences between GRACE and model-based data; (3) maximize the ratio of variability between continents and oceans. The Gaussian filter has been optimized following the latter criteria. Besides, an anisotropic filter, the fan filter, has been analyzed as an alternative to the Gauss filter, producing better statistics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To analyze and define the possible errors that may be introduced in keratoconus classification when the keratometric corneal power is used in such classification. Materials and methods: Retrospective study including a total of 44 keratoconus eyes. A comprehensive ophthalmologic examination was performed in all cases, which included a corneal analysis with the Pentacam system (Oculus). Classical keratometric corneal power (Pk), Gaussian corneal power (Pc Gauss), True Net Power (TNP) (Gaussian power neglecting the corneal thickness effect), and an adjusted keratometric corneal power (Pkadj) (keratometric power considering a variable keratometric index) were calculated. All cases included in the study were classified according to five different classification systems: Alió-Shabayek, Amsler-Krumeich, Rabinowitz-McDonnell, collaborative longitudinal evaluation of keratoconus (CLEK), and McMahon. Results: When Pk and Pkadj were compared, differences in the type of grading of keratoconus cases was found in 13.6% of eyes when the Alió-Shabayek or the Amsler-Krumeich systems were used. Likewise, grading differences were observed in 22.7% of eyes with the Rabinowitz-McDonnell and McMahon classification systems and in 31.8% of eyes with the CLEK classification system. All reclassified cases using Pkadj were done in a less severe stage, indicating that the use of Pk may lead to the classification of a cornea as keratoconus, being normal. In general, the results obtained using Pkadj, Pc Gauss or the TNP were equivalent. Differences between Pkadj and Pc Gauss were within ± 0.7D. Conclusion: The use of classical keratometric corneal power may lead to incorrect grading of the severity of keratoconus, with a trend to a more severe grading.