1 resultado para Teleonomic Entropy
em Universidad de Alicante
Filtro por publicador
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (5)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (39)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Boston University Digital Common (8)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (17)
- Cambridge University Engineering Department Publications Database (41)
- CentAUR: Central Archive University of Reading - UK (57)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (94)
- Cochin University of Science & Technology (CUSAT), India (28)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Diposit Digital de la UB - Universidade de Barcelona (12)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (253)
- Instituto Politécnico do Porto, Portugal (9)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (81)
- Queensland University of Technology - ePrints Archive (87)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (30)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (3)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (18)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (12)
- University of Southampton, United Kingdom (2)
Resumo:
This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.