6 resultados para Teaching of chemistry
em Universidad de Alicante
Resumo:
Aerobic Gymnastic is the ability to perform complex movements produced by the traditional aerobic exercises, in a continuous manner, with high intensity, perfectly integrated with soundtracks. This sport is performed in an aerobic/anaerobic lactacid condition and expects the execution of complex movements produced by the traditional aerobic exercises integrated with difficulty elements performed with a high technical level. An inaccuracy about this sport is related to the name itself “aerobic” because Aerobic Gymnastic does not use just the aerobic work during the competition, due to the fact that the exercises last among 1’30” and 1’45” at high rhythm. Agonistic Aerobics exploit the basic movements of amateur Aerobics and its coordination schemes, even though the agonistic Aerobics is so much intense than the amateur Aerobics to need a completely different mix of energetic mechanisms. Due to the complexity and the speed with which you perform the technical elements of Aerobic Gymnastic, the introduction of video analysis is essential for a qualitative and quantitative evaluation of athletes’ performance during the training. The performance analysis can allow the accurate analysis and explanation of the evolution and dynamics of a historical phenomenon and motor sports. The notational analysis is used by technicians to have an objective analysis of performance. Tactics, technique and individual movements can be analyzed to help coaches and athletes to re-evaluate their performance and gain advantage during the competition. The purpose of the following experimental work will be a starting point for analyzing the performance of the athletes in an objective way, not only during competitions, but especially during the phases of training. It is, therefore, advisable to introduce the video analysis and notational analysis for more quantitative and qualitative examination of technical movements. The goal is to lead to an improvement of the technique of the athlete and the teaching of the coach.
Resumo:
Sustainable Development (SD) is one of the most widely used terms during the last years. It is a multidisciplinary concept, which applies mostly to life sciences but is not limited to them. Even though the short survey conducted by the authors revealed that there are only a few cases of Higher Educational Institutes (HEIs) around Europe that provide programs dedicated to SD, it is obvious that there is a constant raise in the need for implementing courses related to SD in existing programs. This paper discusses the case study of I.S.L.E., an Erasmus Academic Network, which aims to use the existing knowledge and tools in the context of teaching sustainable development topics in Universities and HEIs around Europe as a basis, and elaborate further by introducing an innovative approach towards the improvement of teaching SD in HEIs, based on the current needs as they are identified by the actions of the Network.
Resumo:
The three articles in this special issue of Ambix were among the twenty-one papers presented at the conference “Sites of Chemistry in the Nineteenth Century,” held in Valencia at the Institute for the History of Medicine and Science ‘López Piñero’ in July 2012. This meeting was the second of the series of conferences organised as part of the project Sites of Chemistry, 1600–2000, the aim of which was to investigate the wide and diverse range of physical spaces and places where chemistry has been practised from the early modern period to the twentieth century.
Resumo:
The end of 2015 was the deadline that 189 countries gave themselves to achieve the United Nations Millennium Development Goals (MDGs), a list of eight goals that were agreed upon and approved by the UN after the Millennium Summit in year 2000. Despite some legitimate criticism, the MDGs were revealed as an important tool towards building a more equitable and sustainable world. Yet our planet still faces many challenges. In September 2015, the UN approved a new set of 17 goals, the Sustainable Development Goals (SDGs), aiming to develop and implement strategies to create “The Future We Want”; strategies that 192 countries agreed upon to work together towards a more sustainable planet.
Resumo:
The methodological approach a teacher uses in the competence teaching-learning process determines the way students learn. Knowledge can be acquired from a series of perspectives, mainly: “know-what” (concept), where facts and descriptions of (natural or social) phenomena are pursued; “know-how” (procedure), where methods and procedures for their application are described; and “know-why” (competence), where general principles and laws that explain both the facts and their applications are sought. As all the three cases are interconnected, the boundaries between them are not fully clear and their application uses shared elements. In any case, the depth of student’s acquired competences will be directly affected by the teaching-learning perspective, traditionally aiming to a “know-why” approach for full competence acquisition. In this work, we discuss a suitable teaching-learning methodology for evaluating whether a “know-how”, “know-what” or combined approach seems better for enhancing competence learning in students. We exemplify the method using a selection of formative activities from the Physical Chemistry area in the Grades of Chemistry and Chemical Engineering.
Resumo:
Day of Chemistry, Invited conference, San Alberto Magno 2014